

42 Aero Camino, Goleta, CA 93117

Tel 805-685-0066 | Fax 805-685-0067

info@biopac.com | WWW.BIOPAC.COM

ViewPoint EyeTracker® for BIOPAC Eye Tracking Systems
PC-60 Software Users Guide

BIOPAC Eye Tracking Systems Monocular Binocular

Eye Track Sys: Fixed Head+Clamp EYEFIXMONOCLAMP EYEFIXBINOCLAMP

Eye Track with HMD1 EYETRAKHMD1MONO EYETRAKHMD1BINO

Eye Track for HMD2 EYETRAKHMD2MONO EYETRAKHMD2BINO

Eye Track for 3rd-Party HMD EYETRAKHMD3RDMO EYETRAKHMD3RDBI

Eye Track System: Fixed Head EYEFIXMONO EYEFIXBINO

Eye Frame Mounted Scene EYEFRAMESCENEMO EYEFRAMESCENEBI

New users should study Chapters 2, 3 and 4 to get started:

• Chapter 2: Overview of ViewPoint Describes the theory and provides an overview of the design of the
ViewPoint EyeTracker ®.

• Chapter 3 Installation and Setup of the video capture hardware and driver installation process and
ViewPoint EyeTracker ® software installation.

• Chapter 4 Tutorial A brief tutorial designed to help new users start recording eye movements very quickly
and easily.

The most comprehensive reference section is Chapter 14 ViewPoint Interface: GUI, SDK, CLP

• This chapter covers all aspects of the eye tracker and should be referred to often.

The remaining chapters each deal with a different task or set of tasks that the user will want to perform and
provide some helpful background to eye tracking.

Use menu item: Help > Documentation ... to quickly access the Documentation folder.

Contact Information
Please visit our website frequently for updates and new product announcements.
www.biopac.com > eye tracking or send email to: support@biopac.com.

10 October 2005 1:19 PM

ViewPoint EyeTracker ® is a registered trademark of Arrington Research, Inc.
ViewPoint ~ Voltage ™ is a trademark of Arrington Research, Inc.

RemoteLink™ is a trademark of Arrington Research, Inc.

2005 © Arrington Research, Inc All rights reserved

http://www.biopac.com/ResearchApplications.asp?Aid=50&AF=405&Level=3
mailto:support@biopac.com

CHAPTER 1 INTRODUCTION... 1

1.1 Congratulations ..1
1.2 Custom Software & Hardware Development ..1
1.3 User Feedback ...1
1.4 License Information and Conditions of Use ..2
1.5 High-Risk Activities Warning...2
1.6 Special Thanks ...2
1.7 How to Use this User Guide ...2
1.8 Info Window..3
1.9 Support ...3
1.10 Citing ViewPoint ...3

CHAPTER 2 OVERVIEW OF VIEWPOINT.. 4

2.1 General Description..4
2.2 Infrared Light ..6
2.3 Mapping to Gaze Point ...6
2.4 Software Developer’s Kit (SDK)..7
2.5 Command Line Parser (CLP) ...9
2.6 Inter-Computer & Inter-Application Communication9

CHAPTER 3 INSTALLATION AND SETUP .. 11

3.1 Computer System Requirements..11
3.2 Video Requirements ...11
3.3 Using with Third Party Video Input Equipment11
3.4 PCI Video Capture Card and Driver Installation12

3.5 ViewPoint EyeTracker
®

Software Installation ...14
3.6 License Agreement...14
3.7 ViewPoint License (.VPL) File ..14
3.8 Menu Navigation...15
3.9 User Windows ..16

CHAPTER 4 TUTORIAL ... 18

4.1 Stimulus Window Positioning (Head Fixed) ..18
4.2 EyeCamera Window Setup...18

4.3 Corrective Lenses (Eye Glasses) ...19
4.4 Thresholding...19
4.5 Calibration (Head Fixed)...22
4.6 Data Collection and Analysis ..23
4.7 Sampling Rate ..23
4.8 Frequently Used Settings ...23
4.9 Preferred Window Layout ...24
4.10 Accelerator Keys ..24
4.11 Printing ...24

CHAPTER 5 LOCATING THE PUPIL AND GLINT... 25

5.1 Feature Method ..25
5.2 Noise ..26
5.3 Automatic Slip Compensation...26
5.4 Simulation of Gaze ...27

5.4.1 Manual Simulation...27
5.4.2 Pattern Simulation (only on special versions)................................27

5.5 Setting the Search Regions ..27
5.6 Brightness and Contrast Adjustments ..28

5.6.1 Video AutoImage...28
5.7 Thresholding and Setting the Scan Density..28

5.7.1 Setting the Scan Density ...29
5.7.2 AutoThreshold ...29
5.7.3 Positive Lock Threshold Tracking..29

5.8 Criteria ..29
5.8.1 Pupil Aspect Criterion..30
5.8.2 Width Criteria...30

5.9 Step-by-step guide for Glint-Pupil Vector method.................................30
5.10 Alternative Segmentation Methods...31

5.10.1 Centroid...32
5.10.2 Edge Trace (only on special versions)...32
5.10.3 Oval Fit ..32
5.10.4 Ellipse (only on special versions)...32
5.10.5 Glint Segmentation Methods ...32

5.11 Pupil Scan Area Shape Options ...32

CHAPTER 6 CALIBRATION.. 33

6.1 Raw Data Without Calibration...33
6.2 Calibration Description..33
6.3 Calibration Carryover..33
6.4 Calibration Procedure (Head Fixed) ...33

6.5 Assessing Calibration Success...34
6.6 Omitting Individual Calibration Points ...35
6.7 Re-presenting Individual Calibration Data Points36
6.8 Slip Correction ..36
6.9 Instructions to Subject ..36
6.10 Dominant Eye ...36
6.11 Saving Calibration Eye Images...37
6.12 Advanced Calibration Controls ...37

6.12.1 Presentation Order ..37
6.12.2 Snap and Increment Calibration Modes ..37
6.12.3 Adjusting the Calibration Area ...38

6.13 Custom Calibration Point Positions ..38
6.14 Geometry Grid ..38

CHAPTER 7 CURSOR CONTROL .. 40

CHAPTER 8 OCULAR TORSION.. 41

8.1 Introduction to Torsion..41
8.2 Procedure for Measuring Torsion ...42
8.3 Torsion Demonstration Test ...43
8.4 Overriding the Default Torsion Parameters ..44

CHAPTER 9 STIMULUS PRESENTATION (HEAD FIXED)..................................... 45

9.1 General...45
9.2 Picture Lists ..45
9.3 Using the Stimulus Window (Head Fixed Option).................................47
9.4 Using the GazeSpace Window...47
9.5 Regions of Interest (ROI)..48
9.6 Data Smoothing..49
9.7 Using the SDK, settings files and Serial Port Interface for Stimulus
Presentation ..49
9.8 Integrating with Third Party Products..50

CHAPTER 10 DATA COLLECTION ... 51

10.1 Sampling Rate ..51
10.2 Saving Data to File ...51
10.3 Data File Format...52

10.3.1 File header information..52
10.3.2 File records..52

10.3.3 Synchronous vs. Asynchronous data inserts.................................52
10.3.4 Data Record Tags. ..53

10.4 Direction-of-gaze Coordinates ..56
10.5 Timing Measurement..57
10.6 Region of Interest (ROI)..57
10.7 Quality Marker Codes...57
10.8 Pupil Diameter ..58
10.9 Pupil Aspect..59
10.10 Display Screen Geometry..59

CHAPTER 11 DATA ANALYSIS .. 60

11.1 Real-Time...60
11.1.1 Data Smoothing...61

11.2 Fixation, Saccade, Drift and Blinks ...61
11.2.1 Velocity Threshold...61
11.2.2 Fixations ..61
11.2.3 Drift..62
11.2.4 Blinks...62
11.2.5 Events ...62
11.2.6 SDK...63

11.3 Post-Hoc...63

CHAPTER 12 USING SETTINGS FILES .. 64

12.1 CLP String Parsing ...64
12.2 Saving and Loading Settings Files ...64
12.3 Pre-load Settings in a Startup file ...65
12.4 Settings/LastRun.txt ...65
12.5 Settings File Lists ...65
12.6 SettingsFile Examples ..65
12.7 CLP Commands ...66
12.8 Associating CLP Commands with FKeys..66

CHAPTER 13 SERIAL PORT COMMUNICATION.. 67

13.1 Getting Started ...67
13.2 Sending Real and Test Data...67
13.3 Transfer to Intel and Macintosh Machines..68
13.4 Connections..68
13.5 Serial Protocol ..68
13.6 Serial Packet Header Structure ..69

13.7 Serial Packet Data Structures...70
13.8 Data Value Encoding..71
13.9 Packet Data Structures...72
13.10 Example Serial Port Code ...72

CHAPTER 14 VIEWPOINT INTERFACE: GUI, SDK, CLP .. 74

14.1 General...74
14.1.1 VPX_SendCommand(“setSomething”) replaces
VPX_SetSomething ...74
14.1.2 VPX_SendCommand & formatted strings74
14.1.3 Quoting strings with white spaces ...75
14.1.4 Case insensitive CLP strings...75
14.1.5 Boolean Toggle ...75
14.1.6 SDK return values ...75

14.2 Data Files ...76
14.2.1 Open Data File with Randomly Generated Name76
14.2.2 Specify NewUnique Data File Extension76
14.2.3 Open a Data File and Specify a File Name77
14.2.4 Insert a String into the Data File ..77
14.2.5 Insert a Marker into the Data File ..78
14.2.6 Insert a User Defined Data Tag into the Data File.........................79
14.2.7 Specifes asynchronous or synchronous string data79
14.2.8 Specify asynchronous or synchronous markers data80
14.2.9 Specify asynchronous or synchronous head tracker data80
14.2.10 Specify data file start time..81
14.2.11 Store smoothed or unsmoothed data...82
14.2.12 Specify whether to use buffering (DEPRECATED)....................82
14.2.13 Pause writing of data to file..83
14.2.14 Close Data File ..83
14.2.15 Close Data File and Open in Post-Hoc Analysis tool84

14.3 Stimulus Images ...84
14.3.1 Load Stimulus Image into the Stimulus window84
14.3.2 Specifies how to display the currently loaded stimulus image85
14.3.3 Specify a background “matting” color for the stimulus window......85
14.3.4 Play specified Sound file ...86

14.4 PictureList...86
14.4.1 Initialize Picture List...86
14.4.2 Add List of Image Names to PictureList...86
14.4.3 Randomize List of Images in the PictureList..................................87
14.4.4 Move to Next Image in the PictureList ...87
14.4.5 Move to Start of Images in Picture List ..87

14.5 Controls window: VideoImage ..88

14.5.1 Specify Mapping Feature...88
14.5.2 AutoThreshold ...88
14.5.3 Positive Lock Tracking...89
14.5.4 Adjust Pupil Threshold Slider ..89
14.5.5 Adjust Glint Threshold Slider ...90
14.5.6 Adjust Video Image Brightness ...90
14.5.7 Adjust Video Image Contrast...91
14.5.8 Dynamically Optimize Brightness and Contrast Settings..............91
14.5.9 Adjust Pupil Scan Density ...92
14.5.10 Override Pupil Scan Density Minimum.......................................93
14.5.11 Adjust Glint Scan Density ..94
14.5.12 Override Glint Scan Density Minimum95

14.6 EyeCamera Window...95
14.6.1 Adjust Pupil Sacn Area..95
14.6.2 Specify Pupil Scan Area Shape...96
14.6.3 Pupil and Glint oval fit constraints ...96
14.6.4 Define Glint Scan Area ..96
14.6.5 Define Offset of Glint Sacn Area Relative to the Pupil...................97
14.6.6 Unyoke Glint Scan Area from the Pupil ...97
14.6.7 Define offset of Unyoked Glint Scan Area98
14.6.8 Toggle Show Treshold Dots On / Off...98
14.6.9 Specify EyeImage Overlay Graphics sent to layered application
(EXPERIMENTAL)...99
14.6.10 EyeCamera Tool Bar Display...99

14.7 Video related controls...100
14.7.1 Specify Video Input Standard ..100
14.7.2 Specify Tracking Operation Mode ...100
14.7.3 Specify Dark or Bright Pupil Tracking..101
14.7.4 Specify Pupil Segmentation Method..101
14.7.5 Specify Glint Segmentation Method ..101
14.7.6 Changes default setting for Freeze Feature102
14.7.7 Toggle Freeze Video Imge Preview On / Off102
14.7.8 Reset Video Capture Device ...102

14.8 Calibration controls...103
14.8.1 Start Auto-Calibration ..103
14.8.2 Stop Auto-Calibration ..103
14.8.3 Specify Calibration Stimulus Presentation Speed103
14.8.4 Specify the duration of presentation of calibration warning notice
 104
14.8.5 Specifies Interval Between Presentation of Calibration Stimulus
Points 104
14.8.6 Calibration Snap Mode..105
14.8.7 RePresent in Snap Calibration Mode ..105
14.8.8 AutoIncrement Calibration Mode ...106

14.8.9 Calibration Stimulus Point Presentation Order106
14.8.10 Specify Number of Calibration Stimulus Points........................106
14.8.11 Specify Calibration Stimulus Point Color..................................107
14.8.12 Specify Calibration Stimulus Window Background Color107
14.8.13 Randomize Calibration Stimulus Points Check Box
(DEPRECATED)..107
14.8.14 Specify Calibration Stimulus Point Presentation Order108
14.8.15 Specify Individual Custom Calibration Stimulus Points108
14.8.16 Display Custom Calibration Stimulus Point Order....................109
14.8.17 Select the Specified Calibration Data Point109
14.8.18 Select the Index Number that Maps to the Specified Calibration
Data Point 110
14.8.19 Undo the last operation on a Calibration Data Point110
14.8.20 Re-Present the Specified Calibration Data Point111
14.8.21 Specify Custom Calibration Stimulus Point Locations..............111
14.8.22 Turn Custom Calibration Stimulus Point Location ON / OFF ...112
14.8.23 Print Locations of custom calibration stimulus points in
EventHistory window ...112
14.8.24 Controls display of nearest-neigbor gridlines in the EyeSpace
window 112
14.8.25 Compensate for Slip ..113
14.8.26 Adjust Calibration Area ..113
14.8.27 Save Image of Eye at each Calibration Data Point113

14.9 Controls: Criteria Controls ..114
14.9.1 Specify amount of Smoothing..114
14.9.2 Specify Smoothing Algorithm to Apply...114
14.9.3 Specify Velocity Threshold ..115
14.9.4 Specify amount of Drift Allowed...115
14.9.5 Specify Pupil Aspect Ratio Failure Criterion116
14.9.6 Specify Pupil Width Failure Criterion ...116

14.10 Region of Interest (ROI) ..117
14.10.1 Define an ROI Box...117
14.10.2 Specify Number of ROI to be drawn in a circle around center of
window 117
14.10.3 Remove all ROI Boxes...118
14.10.4 Select a Specific ROI ...118
14.10.5 Select the next ROI Box...118
14.10.6 Lock ROI Settings ..119

14.11 PenPlot controls ..119
14.11.1 Specify Which PenPlot Traces to Display119
14.11.2 BackGround Color of PenPlot Traces......................................120
14.11.3 PenPlot Back Ground Color...120
14.11.4 Specify Speed ot PenPlot Scrolling..120
14.11.5 Specify Range of PenPlot Values ..121

14.11.6 Specify the behavior of the penpot after a video freeze121
14.12 Graphics controls...122

14.12.1 Specify the color of the GazeSpace and PenPlot Lines...........122
14.12.2 Specify which Overlay Graphics to Display in the GazeSpace
Window 122
14.12.3 Specify which Overlay Graphics to Display in the Stimulus
Window 123
14.12.4 Erase Data Displays in the GazeSpace and Stimulus windows
 123
14.12.5 Automatically erase display windows.......................................124
14.12.6 Specify time delay for auto erase...124

14.13 Stimulus Window controls ...125
14.13.1 Specify Stimulus Source ..125
14.13.2 Specify Custom Stimulus window Size and Position................126
14.13.3 Automatically Show the Stimulus Window on Primary Monitor 127
14.13.4 Specify How and where to show Stimulus window128
14.13.5 Calibrate to a third party application window............................129

14.14 Window related controls ..129
14.14.1 Print ViewPoint windows..129
14.14.2 Include Date and Time Stamp on Printed windows..................130
14.14.3 Move and Resize Window ...130
14.14.4 Specify ViewPoint Window Layout...131
14.14.5 Clear Event History window ...131
14.14.6 Save window layout settings..132

14.15 Settings File commands ..132
14.15.1 Load Settings File ..132
14.15.2 Edit Settings File ..132
14.15.3 Show Verbose Settings File Loading Details in Event History .133
14.15.4 Save Settings e.g. calibrations etc. ..133

14.16 SettingsFileList commands..133
14.16.1 Initialize Settings File List...133
14.16.2 Next Settings File in List ..134
14.16.3 Add Settings File to the List ...134
14.16.4 Restart Settings File List ..134
14.16.5 Toggle Autosequencer ON / OFF ..134
14.16.6 Specify delay between Settings Files in List135

14.17 Torsion commands..135
14.17.1 Start / Stop Torsion Calculations..135
14.17.2 Adjust Start Point of Torsion Sampling Arc136
14.17.3 Adjust Radius of Torsion Sampling Arc....................................136
14.17.4 Autoset Torsion Template after Adjustments137
14.17.5 Display Real-Time Torsion Data ..137
14.17.6 Adjust Torsion Measurement Range..138
14.17.7 Adjust Torsion Measurement Resolution138

14.17.8 Set Autocorrelation Template ..139
14.18 Interface settings commands...139

14.18.1 Turn Cursor Control On / Off..139
14.18.2 Use Fixation to Issue Button Click ...139
14.18.3 Specify Fixation Time to Issue Button Click140
14.18.4 Use Blinks to Issue Button Click ..140

14.19 RemoteLink & SerialPort controls..140
14.19.1 Connect / Disconnect Serial Port ...140
14.19.2 Specify Serial Data to Send ...141
14.19.3 Send Serial Port Ping...141

14.20 HeadTracking commands..141
14.20.1 Connect / Disconnect Head Tracker Interface141
14.20.2 Specify whether to use local or global origin............................142
14.20.3 Reset Origin for the Head Sensor...142
14.20.4 Set Position and Angle Origins ..142
14.20.5 Specify the Vector between Head Sensor and the Eyeball......143
14.20.6 Turn CRT pulse synchronization On / Off143

14.21 Binocular commands...143
14.21.1 Turn Binocular Mode On / Off ..143
14.21.2 Specifies Binocular Averaging ...144

14.22 File Related ...144
14.22.1 Launch ViewPoint with Command Line Options144
14.22.2 Specify Default ViewPoint Folder path.....................................145

14.23 FKey..146
14.23.1 Associate CLP Commands with FKeys....................................146

14.24 TTL..146
14.24.1 Associate CLP Commands with TTL Voltage Changes...........146
14.24.2 Set TTL Output Voltages ...147
14.24.3 Simulate Change in TTL Input ...147
14.24.4 Set TTL Output to Indicate Data Quality Codes.......................148

14.25 Misc ...149
14.25.1 Specify Verbose Information to Send to History Window.........149
14.25.2 Update Eye Data on Request ..150
14.25.3 Set Status Window Update Rate for FPS Field........................150
14.25.4 SDK Debug Mode..150
14.25.5 Specify ViewPoint Generated Events151
14.25.6 Turn Accelerator Key Functionality On / Off.............................151

14.26 Parser Instructions...151
14.26.1 Settings File Comment...151
14.26.2 End of Settings File Command ..152

CHAPTER 15 SOFTWARE DEVELOPERS KIT (SDK) ... 153

15.1 General...153
15.2 Registering to Receive Notifications ...153
15.3 Example SDK Code..155
15.4 Data Quality Codes ..155
15.5 Sending CLP Commands with the SDK..156
15.6 High Precision Timing...156
15.7 DLL Version Checking..156
15.8 SDK Access Functions ...156

15.8.1 Get Eye Data Access ..157
15.8.2 Get Time Information...163
15.8.3 Get Motor Data..164
15.8.4 Get ViewPoint Status...165
15.8.5 Get ViewPoint Stimulus Window ...166
15.8.6 Get Stimulus Display Geometry ..167
15.8.7 Get ROI ...167
15.8.8 Set Remote EyeImage ..169

15.9 DLL Interface ..171
15.10 ViewPoint Events & Notification Messages173

15.10.1 General Events ..173
15.10.2 Calibration Events..174

CHAPTER 16 LEGACY, OBSOLETE, & DEPRECATED.. 179

16.1.1 Old CLP...179
16.1.2 Old VPX...180

CHAPTER 17 TROUBLESHOOTING ... 181

17.1 EventHistory Window..181
17.2 Improving Frame Rate..181
17.3 EyeCamera Window Troubleshooting ..181

17.3.1 Bottom half of EyeCamera window is black.................................182
17.4 General Troubleshooting ..182

CHAPTER 18 HISTORY OF EYE TRACKING METHODS .. 183

18.1 Electrical Methods ..183
18.1.1 Surface Recordings...183
18.1.2 Induction Coils...183

18.2 Optical Methods..183
18.2.1 Reflections, or Purkinje Images...183
18.2.2 Dark Pupil Tracking ...184

18.2.3 Limbus Tracker..184
18.2.4 Bright Pupil Method ...184
18.2.5 Corneal Bulge Method...184
18.2.6 Vector Difference Method..184

CHAPTER 19 BINOCULAR OPTION ... 186

19.1 Installing Binocular FrameGrabber & Software...................................186
19.2 Operating in Binocular Mode ..186
19.3 Setup ..186
19.4 Storing Data..186
19.5 Real-Time Display of Binocular Data..187
19.6 Interfacing to Other Applications...187
19.7 Settings Files ..188

CHAPTER 20 HEAD TRACKER OPTION ... 189

20.1 General...189
20.2 Unpacking...189
20.3 Installation ..189
20.4 Cable Attachment ...189
20.5 Baud Rate and DipSwitch Settings...190
20.6 Connection to FOB ...190
20.7 CRT Synchronization..191
20.8 Location and Orientation of Transmitter & Receiver191
20.9 Head Tracker Event Data ...192
20.10 HeadSpace Window..192
20.11 Troubleshooting...192

ARI SOFTWARE LICENSE ... 193

THIRD PARTY LICENSES .. 195

Page 1

Chapter 1 Introduction
1.1 Congratulations

ongratulations on your purchase of the ViewPoint EyeTracker®. It has been designed to
be the easiest to use, most reliable and best value eye tracker on the market. Because
the solution is primarily software, it has several advantages:

No expensive and cumbersome hardware to configure and maintain.
Easy integration with other application programs.
Standard user interface panels.
Upgrades are trivial to install and relatively inexpensive.
Performance will increase when the computer is upgraded.

It provides:
A comprehensive solution for eye tracking research.

An embeddable eye tracking solution for 3rd party products and end user custom
applications.

The ViewPoint EyeTracker® was originally developed in 1995 for the Apple Macintosh
platform. It has now been ported to the Microsoft Windows platform. It is our intention to make both
versions essentially identical. However, product development cycles mean that new features will
sometimes appear on one platform before appearing on the other. Please visit our web site
regularly for further hardware and software developments and platform specific variations

1.2 Custom Software & Hardware Development
Special software and hardware development for particular laboratories or organizations may

be performed under individual consulting agreements. ViewPoint EyeTracker® is easily
customized as an embedded eye tracking solution for OEMs. We also help OEMs to interface the
ViewPoint EyeTracker® with their equipment by providing custom camera and optical solutions.
Please email inquiries to: info@ArringtonResearch.com

1.3 User Feedback
Suggestions for improvements to this manual or to the ViewPoint EyeTracker ® software are

always welcome and appreciated. Please email comments to: info@ArringtonResearch.com

C

Page 2

1.4 License Information and Conditions of Use
Use of the software constitutes consent to the terms of the “ARI Software License” on page

193. The contents of this user guide and any other documentation provided with the ViewPoint
EyeTracker® is for the use of registered ViewPoint EyeTracker ® users only. No part of this or other
ViewPoint EyeTracker ® documentation or Software Developer Kit (SDK) information may be
distributed or shared with others, without prior written permission from Arrington Research, Inc.

1.5 High-Risk Activities Warning
Every effort has been made to provide a bug-free product. Nevertheless, this software is not

intended for use in the operation of nuclear facilities, aircraft navigation or communications
systems, or air traffic control, or medical treatment and diagnosis, or for any other use where the
failure of the software could lead to death, personal injury, damage to property or severe
environmental damage.

1.6 Special Thanks
The initial stages of the ViewPoint EyeTracker ® project were greatly facilitated by the

generosity of Professor Richard Held, M.I.T., Dr. Yasuo Nagasaka, Rikkyo University; many thanks
and deep gratitude is given to them.

1.7 How to Use this User Guide
New users should study Chapters 2, 3 and 4 to get started:
Chapter 2: Overview of ViewPoint Describes the theory and provides an overview of the

design of the ViewPoint EyeTracker ®.
Chapter 3 Installation and Setup of the video capture hardware and driver installation

process and ViewPoint EyeTracker ® software installation.
Chapter 4 Tutorial A brief tutorial designed to help new users start recording eye

movements very quickly and easily.

Chapter 14 ViewPoint Interface: GUI, SDK, CLP is the most
comprehensive reference section for all aspects of the eye tracker
and should be referred to often.

The remaining chapters each deal with a different task or set of tasks that the user will want
to perform and provide some helpful background to eye tracking.
Use menu item: Help > Documentation ... to quickly access the Documentation folder.

Type fonts are used with the following meanings:

Page 3

Table 1: Meaning of Type Fonts
Type Font Example Meaning

Eye tracking has many applications. Normal text

stimulusWindowDimensions Program variable, or SDK code

Load PICT image User selection: Menu Item or Button

Video window Program Window

Figure 1: Link to section, figure or table

1.8 Info Window
The Info window can be displayed using menu item Help > Info. This provides system

information, a list of keyboard shortcut keys, display devices that ViewPoint has detected,
calibration mapping precision information, etc.

1.9 Support
For support questions send email to: Support@ArringtonResearch.com

1.10 Citing ViewPoint
Please use the following format when citing the ViewPoint EyeTracker®.
ViewPoint EyeTracker® by Arrington Research, Inc.

Note that ViewPoint is one word with only the letters V and P capitalized, and that

EyeTracker is also one word, with only the letters E and T capitalized. It is a registered trademark
and should be followed by a capital R within a circle, ®, or if not available, a capital R within
parenthesies, (R).

You may also wish to include the web site address (www.ArringtonResearch.com), where
ArringtonResearch is one word. Correct capitalization is not required for the web link to work
properly, however using only a capital A and a capital R is the preferred form and it makes the link
more readable.

We love to hear about your research, published or not, please let us know what you are
working on!

http://www.arringtonresearch.com/
mailto:Support@ArringtonResearch.com

Page 4

Chapter 2 Overview of ViewPoint
2.1 General Description

The ViewPoint EyeTracker® provides a complete eye movement evaluation environment
including integrated stimulus presentation, simultaneous eye movement and pupil diameter
monitoring, and a Software Developer’s Kit (SDK) for communicating with other applications. It

incorporates several methods that a user can select from to optimize the system for a particular
application. It provides several methods of mapping position signals extracted from the segmented
video image in EyeSpace™ coordinates to the participant’s point of regard in GazeSpace™
coordinates.

Figure 1: Shows how the ViewPoint EyeTracker® works in a typical head fixed
configuration. The numbers in this section refer to the item or block numbers in the figure.

The infrared light source (item 1.) serves to both illuminate the eye (item 2.) and also to
provide a specular reflection from the surface of the eye, i.e., from the smooth cornea. In dark pupil
mode, the pupil acts as an infrared sink that appears as a black hole; see Figure 2:. In bright pupil
mode, the “red eye” effect causes the pupil to appear brighter than the iris. (Note that a different
camera and illuminator configuration is required for bright pupil operation.)

The video signal from the camera (item 3.) is digitized by the video capture device (item 4.)
into a form that can be understood by a computer. The computer takes the digitized image and
applies image segmentation algorithms (item 5.) to locate the areas of pupil and the bright corneal
reflection (glint). Additional image processing (item 6.) locates the centers of these areas and also
calculates the difference vector between the center locations. A mapping function (item 7.)
transforms the eye position signals (item 6) in EyeSpace coordinates to the subject’s GazeSpace
coordinates. (Item 8.) Next, the program tests to determine whether the gaze point is inside of any
of the region of interest (ROI) that the user has defined.

The calibration system (item 12.) can be used to present calibration stimuli via (item 10.) to
the user and to measure the eye position signals (item 6.) for each of the stimulus points. These
data are then used by (item 12.) to compute an optimal mapping function for mapping to position of
gaze in GazeSpace (item 7.).

Page 5

Figure 1: Schematic of the ViewPoint EyeTracker® System (head fixed)

Page 6

2.2 Infrared Light
The value of using infrared light is illustrated in Figure 2:. The left side of the figure shows

an image in normal light; in this subject the pupil of the eye is almost impossible to discriminate
from the dark iris. The right side of the figure shows an image of the same eye, but viewed with an
infrared sensitive camera under infrared lighting conditions; the pupil is easily discriminated. Note
that in each case the subject is wearing a contact lens.

Figure 2: Infrared light allows for pupil discrimination

There should always be the utmost concern for the safety of the subject. The issue of safe
limits of infrared (IR) irradiance is frequently discussed.

10 mW / cm sq is probably the safe maximum figure for corneal exposure over a prolonged
period (Clarkson, T.G. 1989, Safety aspects in the use of infrared detection systems, I. J.
Electronics, 66, 6, 929-934).

The infrared corneal dose rate experienced out of doors in daylight is of the order of 10-3 W /
cm-2. Safe chronic ocular exposure values particularly to the IR-A, probably are of the order of 10-2
W/ cm-2” (D.H. Sliney & B.C. Freasier, Applied Optics, 12:1, 1973).

ISO/DIS 10342 (page 7) gives maximum recommended fundus irradiance for use in
Ophthalmic Instruments of 120 mW / sq cm but this is for short-term exposure.

All IR-illuminator and camera systems provided by Arrington Research, Inc. are designed to
be well within safe limits of exposure.

2.3 Mapping to Gaze Point
It is often necessary to determine where a person is looking, that is, to determine the gaze

point, also called the point of regard. This task is performed by using a mathematical function to
map the eye position signal in the EyeSpace coordinates of the video image to the gaze point in
the GazeSpace coordinates of the visual stimulus. There are many algorithms that can be used to
perform such a mapping and many of them are company proprietary. By far, the best algorithms
are non-linear. This is because the eye movements are rotational, i.e., the translation of the eye

Page 7

position signal that is apparent to the camera is a trigonometric function of the subject’s gaze
angle. Moreover, the camera angle may provide an oblique line of sight. ViewPoint EyeTracker®

employs one of the most powerful and robust methods available.

2.4 Software Developer’s Kit (SDK)
The ViewPoint EyeTracker® software includes a powerful software developer’s kit (SDK)

that allows programs to seamlessly interface with ViewPoint in real-time. It provides real-time
access to all ViewPoint data. It provides for calibration stimuli in the user’s stimulus window, or
the user’s application to draw into ViewPoint’s Stimulus and GazeSpace windows. It provides
complete external control of the ViewPoint EyeTracker. The SDK interface is based on shared
memory in a dynamic-link library (DLL).

MATLAB® (as of version R17) is now designed so that the ViewPoint DLL can be
loaded directly into MATLAB, which means that a user can call ViewPoint SDK functions,
as easily as calling MATLAB functions.

The SDK software includes:
The DLL library interface,
.h and .lib files
plus sample source code written in C.
This is documented in detail in Chapter 14 ViewPoint Interface: GUI, SDK, CLP
The SDK is designed to be very easy to use. A complete program interface is shown here

below:
#include “vpx.h”

main()
{
for(int ix=0; ix<999 ; ix++)

 {
 VPX_RealPoint gp; // a structure with two floats for (x,y) values
 VPX_GetGazePoint(&gp); // pass by reference
 println(“ViewPoint gaze point: %g, %g “, gp.x, gp.y);
 }
}

This very simply program lists the X and Y positions of gaze calculated by ViewPoint.

Page 8

All eye data is available via easy to use, high level, access functions. Here are a few
examples:

VPX_GetComponentVelocity(&vel);
VPX_GetFixationSeconds(&secs);
VPX_GetTorsion(°rees);

Important status items are also available, for example:
VPX_GetStatus(VPX_STATUS_DataFileIsPaused)

Several data synchronization mechanisms exist, for example:
VPX_SendCommand(“dataFile_NewUnique”);
VPX_SendCommand(“dataFile_InsertMarker %c”, theMarker);
VPX_SendCommand(“dataFile_InsertString “Showing picture of a cat.”)
VPX_SendCommand(“dataFile_Pause”);

Page 9

2.5 Command Line Parser (CLP)
Every graphical user interface (GUI) selection and adjustment that the user makes in

ViewPoint (e.g., menu item selection, radio button selection, slider value) can be saved in a
Settings file, so that they can be loaded again next time the program is run. The control values are
stored as single line ASCII commands in the form of a keyword and parameters. When a Settings
file is loaded, each line in the file is sent to the ViewPoint command line parser (CLP).

These command strings can also be sent to ViewPoint from other programs while
ViewPoint is running, which means that outside, “layered”, programs can have complete control
of the ViewPoint EyeTracker®. These command strings can be sent via the software developers
kit (SDK) function VPX_SendCommand(“some command string”), This can be done from programs
running on the same machine or from programs running on remote computers via an Inter-
Computer Link.

There are more CLP commands than there are GUI controls in ViewPoint. For example
there are commands to allow fine control of ViewPoint operations and behavior. There are also
commands for all the GUI controls, for example, to adjust the amount of data smoothing, to display
/ hide various pen plots, freeze / un-freeze the eye camera video. There are commands to open,
pause, resume, and close ViewPoint data files. There are commands to insert remote
synchronization data into the ViewPoint data files. If there is an action that you need to perform
but cannot find a GUI control for it, refer to the Chapter 14 ViewPoint Interface: GUI, SDK, CLP to
see if a CLP command exisits.

Chapter 14 ViewPoint Interface: GUI, SDK, CLP provides a complete description of each
type of control.

2.6 Inter-Computer & Inter-Application Communication
The ViewPoint EyeTracker® communicates easily with other applications, either on the

same computer or on a remote computer. ViewPoint can send eye data and status information to
other applications and it can receive instructions from other applications for program control and
data synchronization.

The ViewPoint EyeTracker® software includes the auxiliary program RemoteLink ™ to
help take care of inter-computer communication. RemoteLink can present calibration stimuli on a
remote computer’s display screen. It can also listen for ViewPoint data and update a copy of the
DLL on the remote machine, so the application believes that it is talking to ViewPoint on the same
machine. RemoteLink also includes a ViewPoint data simulator, for development where
ViewPoint is not available.

For details about the use of RemoteLink ™ refer to the documentation on the RemoteLink
folder on the disk provided with ViewPoint.

Page 10

This link is currently only via the serial port, however we are developing an Ethernet link that
should be available soon. The former is documented in detail later in Chapter 13 Serial Port
Communication .

Figure 3: RemoteLink Communication

Page 11

Chapter 3 Installation and Setup
This chapter describes the procedure for the video capture hardware and driver installation

process and ViewPoint EyeTracker® software installation.

IMPORTANT: The display must be set to True Color (32 bit).

3.1 Computer System Requirements
This is the manual for ViewPoint PC60 that runs on the Windows 2000 and Windows XP

operating systems. As of version 2.8.3, we no longer officially support Windows NT, Windows 98,
or Windows ME.

* DELL computers models Optiplex and Dimension are not officially supported, because
historically the system BIOS in these models did not release the IRQ necessary for real-time video
capture. Some newer versions of these DELL models reportedly do no suffer from this problem,
however we currently have no clear specification for distinguishing between the versions. Other
DELL models do not have this problem.

3.2 Video Requirements
For users who want a head free system, we recommend that the EyeFrame ™ hardware be

purchased together with the ViewPoint EyeTracker® software for a complete solution. For users
who want a head fixed system, as for psychophysics, we recommend that the QuickClamp™
EyeTracker Hardware be purchased together with the ViewPoint EyeTracker® software for a
complete solution. Either of these include a video camera and video capture device that provides
60 Hz eye movement monitoring. This is a closed system between the NTSC video camera and
the NTSC video capture device so it can be used in countries that have PAL or other video
standard without problem.

To work properly, the ViewPoint EyeTracker® PC 60 version requires the special high
performance PCI video capture board supplied by Arrington Research. It will not work with other
video capture devices.

3.3 Using with Third Party Video Input Equipment
Video input may now include the PAL and SECAM standards, as well as the previously

supported NTSC standard. The user should use Video > Video Standard > * to select the
standard that corresponds to the type of video camera, videocassette recorder (VCR), etc., that is
used.

The selected video standard is stored in the preferences file and will be used as the default
when ViewPoint is next run.

Page 12

The default setting is NTSC and this should not be modified unless third party video equipment is used
that specifies a different video standard.

3.4 PCI Video Capture Card and Driver Installation

Important: If you are updating from version 1.x of ViewPoint EyeTracker® or have had another BT848
video capture device previously installed, you must FIRST remove all of the video capture software and drivers
from your computer. SECOND, after the driver software has been removed, physically remove the old video
capture device from your computer before proceeding with the new frame grabber installation.

A. Installing the New Frame Grabber

1. Turn off the computer, and then disconnect the power cable.
2. Remove the cover panel from your computer. If necessary, consult your computer system

manual for instructions.
3. Remember to discharge your body's static electricity by touching the metal area of the

computer chassis.
4. Select an empty PCI slot and remove the slot cover.
5. Place the card into the slot, paying particular attention that the card is inserted correctly.
6. Screw the card into place.
7. Replace the cover panel.
8. Reconnect the power cable and turn on the computer.

B. Installing the New Driver

WINDOWS XP ONLY

1. Insert the ViewPoint EyeTracker® CD-ROM into your CD-ROM drive.
2. If the Windows “Found New Hardware Wizard” asks you if you would like to connect to

Windows Update to search for the drivers select “No, not at this time” and “Next”.
3. Select “Install the software automatically” and “Next”
4. At the next dialogue box, with the top line item highlighted select “Next”.
5. At the “not digitally signed” warning select “Continue Anyway”.
6. Select Finish

NOTE: you will have to repeat the above steps for each input if you have a binocular or scene
camera version of the eye tracker.

Other WINDOWS Operating Systems
1. If the update device driver wizard starts, click “Cancel”.

2. Insert the ViewPoint EyeTracker® CD-ROM into your CD-ROM drive.
3. Click Start.
4. Click Run.
5. Type the following: F:\driver\lc1_2\english\disk1\setup.exe (If F is not the device letter of

your CD-ROM drive, substitute with the correct drive letter).
6. Click OK.
7. Follow the onscreen instructions to complete installation.
8. Restart your computer when instructed to.

Page 13

Note 1: With Windows XP it may be necessary to let the “Install New Hardware” wizard
take care of the installation.

Note 2: For the binocular option and scene camera options it will be necessary to run
through the driver install routine for each input. You will be prompted to do this.

Note 3: The video cable must be connected to the composite input number 1 of the
frame grabber for monocular ViewPoint. Refer to Figure 4

Note 4: The video cable must be connected to the composite input numbers 1 and 2 of
the frame grabber for binocular ViewPoint. Refer to Figure 4

Figure 4: Frame Grabber Board Connections

Single Real-Time Input
“Monocular” Card

Quad Real-Time Input

“Binocular / Scene Camera Option card

Composite Input 4 = Not used

Composite Input 3 = Scene

Composite Input 2 = EYE_B

Composite Input 1 = EYE_A

White Sync = Not used

Composite Input 1 = EYE_A

Composite Input 2 = Not used

Input S-VHS = Not Used

Page 14

3.5 ViewPoint EyeTracker® Software Installation
Copy the ViewPoint folder from the CDROM to the hard drive of your computer. This folder

is illustrated in Figure 5:. This directory structure must be maintained for proper functioning of the
software. The ViewPoint EyeTracker® software will not run without the VPX_InterApp.dll file.
Please do not make illegal copies. You may start the program immediately by double clicking the
icon of the ViewPoint.exe application program.

Figure 5: The ViewPoint EyeTracker®Folder

3.6 License Agreement
Use of the ViewPoint EyeTracker ® software constitutes consent to the terms of the “ARI

Software License” and contained in the document License.pdf in the ViewPoint folder.

3.7 ViewPoint License (.VPL) File
The video capture board (and optional hardware) contain serial numbers that must match the

one of the numbers encrypted into your ViewPoint License (.VPL) file. This .VPL file is located in
the folder named License folder inside the ViewPoint folder. The.vpl file also specifies where any
options have been enabled. The .VPL file is named in the format YourName.vpl.

Page 15

3.8 Menu Navigation
The ViewPoint menu navigation system consists of various options, organized by function

presented in a dropdown menu bar at the top of the ViewPoint application window.

Figure 6: The ViewPoint EyeTracker® Menu Navigation Bar

Menu Item Use this Menu to:

File > Open, pause and close data files,
Save and load sesttings files,
Load Images and picture lists, and
Print windows

Video > Control the incoming video signal, and
Specify the tracking modes and methods

Windows > Open and close windows.

Stimuli > Specify the type of stimuli to be used,
Control the stimulus window settings, and
Specify the Geometry Grid settings

PenPlots > Hide or show PenPlots, and
Specify PenPlot window settings

Interface > Use the cursor control feature, and
Use the serial port interface (or Eternet server, coming soon).

Help > Access system configuration information,
View license Holder information,
Access the Documentation folder, and
Link to the Arrington Research, Inc. web site

Page 16

3.9 User Windows
When the ViewPoint EyeTracker® program is started it displays several windows arranged as

shown below.

Figure 7: Start-up arrangement of the user windows

Note: The normal window layout requires a display at least 1024 x 768.

To set up for multiple monitors you will need to install a second display card into your computer
and consult the operating manual for your computer for configuration settings.

Page 17

Table 2: Window function descriptions
Window Function:
EyeCamera: Displays the video image of the eye and image analysis graphics
EyeSpace: Corresponds to the geometry of the EyeCamera image. This window displays

an array of the relative locations of the pupil, glint, or difference vector,
which were obtained during calibration. These provide information about
calibration accuracy and allow rapid identification and correction of
individual calibration errors by allowing manual calibration of individual
points. Refer to Chapter 6.

Controls: Allows the experimenter to adjust the image-analysis and gaze-mapping
parameter settings and to specify the feedback information to be displayed
in both the Stimulus window and the GazeSpace™ window.
VideoImage tab: Image quality adjustments and tracking method
specification.
DataCriteria tab: Specify smoothing and other criteria to apply to the data.
Data Display tab: Specify information to be displayed in the Stimulus and
GazeSpace windows.
Regions tab: Setup regions of interest (ROIs).
Scene tab: Adjust brightness and contrast of scene image (scene camera
option only)

Status: Gives details about processing performance and measurements
Stimulus: (what the subject views) that is designed to be presented full screen,

preferably on a second monitor. Upon which may be displayed the subject’s
calculated position-of-gaze information and region of interest boxes. Refer
to Chapter 8

Penplot: Plots X and Y position of gaze, velocity, ocular torsion, pupil width, pupil
aspect ratio etc. in real time. The user may select which penPlots to display
using menu item PenPlot > *. The range of many of the penPlot displays can
be adjusted by clicking the right mouse button in the PenPlot graph well.

Page 18

Chapter 4 Tutorial
This Chapter provides a brief tutorial designed to help you get started very quickly and

easily. For simplicity it assumes use of the dark pupil only method; however for normal subject
testing the Glint-Pupil Vector method may be more appropriate. For further information refer to
5.1 Feature Method.
This tutorial describes the steps for using the Head Fixed product (which includes HMD mounted
systems), not the Head Mounted product, however many of the steps are the same.

4.1 Stimulus Window Positioning (Head Fixed)
Position the monitor, on which the Stimulus window is to be displayed, so that when the

subject is looking straight ahead, their position of gaze is approximately two thirds of the way up
the monitor vertically and centered horizontally. The Stimulus window should be placed so that
the subject can see it easily when positioned comfortably. This is best achieved using a second
monitor and full screen stimulus display. Refer to Chapter 9.

4.2 EyeCamera Window Setup
Instructions for proper positioning of the Camera & LED.
Position the camera at 45 degrees below the line of sight of the subject (as they are viewed

from the side).
Position the LED so that it appears at the 11 o'clock position when looking at the camera

lens, such that the top surface of the LED and the camera lens are along the same horizontal
plane. This allows both the LED and the camera to simultaneously be as high as possible, while
still not occluding the vision of the monitor.

Move the camera mount sideways, such that the LED is centered along the optical axis of
the eye while the eye is looking in the center of the display. This will mean that the camera is
slightly off axis (as viewed from above). In other words, if the subject looks straight down she
should be looking at the LED, not at the camera lens.

Adjust the camera so that the pupil is centered in the EyeCamera window as the subject
looks at the center of the display and the eyeball fills the maximum possible area as shown in
Figure 7. Movement between the head and the EyeCamera must be minimized. This can be
achieved by using the Arrington Research Precision Head Positioner and camera system.

Defocus the camera so that the corneal glint is spread to about the size of an eighth (or
more) that of the pupil. Besides making the glint larger, defocusing also effectively lowers the
intensity of small bright extra reflections (by virtue of the point spread function). Defocusing may
be achieved by rotating the camera lens or by adjusting the slide bar to move the camera closer or
farther from the eye. Generally, the image of the eye should be such that the corners of the eye
(the canthi) are at the horizontal edges of the camera window.

Page 19

Note that when de-focusing, it is preferable to move the focal plane farther
away from the camera, rather than closer to it, because the latter will
sharply focus on any dirt or debris that is on eye-glass lenses.
The LED may produce a doughnut shape of illumination. If that is the case, adjust the LED

so that the darker center of the doughnut is in the center of the camera image, this will put the
brighter ring around the edges near where the canthi and lids are located. This doughnut may be
more easily observed by placing the palm of the hand, or a piece of paper, at the location of the
eye and then moving the LED slightly.

If the video image is too dark or too bright you can adjust the contrast and brightness
settings by adjusting the brightness and contrast sliders on the Controls window. When adjusting
the brightness and contrast controls in ViewPoint, the general goal is to increase the range of
gray levels as far as possible that is to DECREASE the contrast as much as possible, while
MAXIMIZING the blackness of the pupil and the whiteness of the glint. However, the glint should
be the only spot that is saturated to maximum brightness.

Decrease the brightness until you obtain a pupil that is as black as possible and adjust the
contrast so that the glint, and only the glint, is of maximum white.

4.3 Corrective Lenses (Eye Glasses)
There are two main effects relating to the fact that the front and back surfaces of the lens will

reflect light. First of all, the reflected light is wasted so that the illumination of the eye (light source
path) and the image of the eye (light to camera) will be attenuated. Second the reflection from the
illumination may be bounced back into the camera, which will be very bright and cause the auto-iris
of the camera to produce a darker (and often varying brightness) image of the eye.

If there is a problem with the front surface reflection of corrective lenses, try adjusting the
angle of the lens relative to the camera-LED assembly. There are two ways to do this:

Slightly tilt the corrective lenses by moving the earpiece so that it is near the auditory canal
(hole in the ear) rather than resting on top of the ear; this is fairly easy for lightweight springy metal
frames, but may not stay in place with heavier frames.

Slightly move the camera so it is more than 45 degrees below the line of sight.

4.4 Thresholding
The software attempts to locate the pupil by searching for a dark region within the pupil

search area. In the Controls window : Mapping Feature group, select Pupil Location. Follow the
steps below to undertake the thresholding process for this method:

Toggle show threshold dots “ON” using the button in the EyeCamera window, or Menu item
Video > Show Threshold Dots.

Ask the subject to fixate at the center of the display screen. If self-testing move the
EyeCamera window to the center of the display screen.

Page 20

Select the Pupil Search Area Adjustment icon at the top right of the EyeCamera window,
illustrated in Figure 9: Use the mouse to drag out a rectangle that limits the area in which to search
for the pupil. In particular, use this to eliminate dark shadow areas that could be confused with the
pupil.

Press the AutoThreshold button on the Controls window: threshold group. If necessary,
adjust the dark pupil threshold setting in the Controls window to ensure that the green dots appear
only in the pupil and that the yellow oval outlines the pupil and is fairly circular. (Note that the
Status window displays the oval’s aspect ratio, 1 = perfect circle) The yellow oval indicates where
the program has located the area of the pupil.

If too many dark areas other than the pupil have green dots, adjust the dark pupil threshold
slider to the left. Alternatively, if insufficient pupil area is being identified as dark (with green dots),
adjust the dark pupil segmentation threshold slider to the right. The Positive-Lock Threshold-
Tracking attempts to provide optimal tracking, however it is not appropriate for all subjects or
situations.

 After the pupil has been isolated, adjust the scan density to use the minimum number of
dots that can reliably and consistently locate the pupil. Correct thresholding of the dark pupil is
illustrated in Figure 9:. The default set on startup is optimal for most situations and you should very
rarely need to adjust this.

Note: Unnecessarily high scan density settings together with large scan areas can cause
the frame rate to drop and data can be lost.

Ask the subject to look at each of the four corners of the Stimulus window to ensure that the
pupil remains in the search box and to ensure accurate thresholding for all potential eye
movements. i.e. the yellow oval outlines the pupil and is fairly circular. If self-testing, move the eye
camera around to the four corners of the display to view the effects of pupil segmentation at
different position of gaze. At any point the experimenter can toggle the image display On/Off.
When Off it provides a still image of the eye to aid identification of successful thresholding. This is
accomplished by freezing the video by (a) pressing the Freeze Video icon button at the bottom
right of the EyeCamera window, (b) by selecting the menu item: Video > Freeze Video, or (c) by
pressing the F1 function key. When frozen, the icon button will be outlined in red and a check mark
appears next to the menu item. The EyeCamera window will also indicate "*** FROZEN ***" in the
title bar.

Selectingn the option for Positive-Lock threshold tracking may help in many
situations, but it does comsume more CPU time.

Note: It takes time to paint the threshold dots on the screen, but it is very useful for
determining what Segmentation Threshold and Scan Resolution settings are optimal. Once
optimal settings have been found, the Toggle show threshold dots may be turned off to

Page 21

remove the computational burden of painting the colored dots.

Note: this section describes pupil only thresholding. With the Pupil only method, any X, Y
plane head movement will be confounded with eye movement. To measure movement that
is invariant to X, Y plane head movement, use the glint-pupil vector method. For
instructions on how to set up for glint-pupil vector method, please refer to Chapter 5

Figure 8: Thresholding to identify the dark pupil

4.5 Calibration (Head Fixed
After successful thresholding as outlined in S
Select menu item: Video > Mode > High Pre

window will display the message: “30HP”.
Warn the subject of the onset of the calibratio
Instruct the subject to look directly at the cent

The calibration stimulus points will appear in random
Start the calibration by pressing the Auto-Cal

message “Get Ready” will appear briefly on the scre
the calibration process. This can be suppressed or t
section in the EyeSpace window.

During the calibration process, ensure the pu
monitoring the green dots and the yellow oval, i.e., m

Check the calibration by using the plot of the
window. Successful calibration will be indicated by a
green dots corresponding to the locations of the pup

Stray calibration data points can be identified
EyeSpace window allows the user to select stray ca
data point is highlighted in the graphics well. Data p
left clicking the calibration point.
Operation Mode Toggle
Freeze Video
Toggle Show Thresho
ld Dots
Pupil Search Area Adjustment
Lock Search Area Adjustments
Page 22

)

ection 4.3 follow the steps below:
cision (30Hz 640 x 480) The EyeCamera

n stimuli to ensure successful calibration.
er of each stimulus until it converges to a point.
 order.

ibrate button on the EyeSpace window. The
en to draw the subject’s attention to the start of
he display time adjusted via the Advanced

pil is accurately located at all times by
onitoring the image segmentation.

calibration data points in the EyeSpace
 rectilinear and well-separated configuration of
il at the time of calibration point capture.

 and re-calibrated. The data point slider in the
libration points to be recalibrated. The active

oints can also be selected with the mouse by

Page 23

Select the stray calibration point by right mouse clicking the point in the EyeSpace window.
Instruct the subject to look at the center of the stimulus and represent the calibration point by

pressing the re-present button in the EyeSpace window. The message “Get Ready” will appear
briefly on the screen at the calibration point location to draw the subject’s attention to the re-
presentation location. This can be suppressed or the display time adjusted via the Advanced
section in the EyeSpace window. This exercise can be repeated with as many calibration data
points as necessary. If the calibration points are not rectilinear, for example, there are lines
crossing then complete re-calibration is necessary.

A quick check of calibration accuracy may be done by asking the subject to look at particular
points on the stimulus and using the GazeSpace window to verifying that the gaze point matches
up with the points looked at.

4.6 Data Collection and Analysis
Now that the system is calibrated, data can be collected. To start recording data to file:

Select menu item: File > Data > New Data File. This will prompt you to create a new file in the
directory Data. When data is being stored the Status window will show: DATA: OPEN
“datafilename.txt”

The menu item: File > Data > Unique Data File will create a new data file with a unique
name to be opened without having to go through the File Dialog box.

Recording can be paused at any time by selecting menu item: File > Data > Pause Data
Capture. When data storage is paused the Status window will show: ”PAUSE”. To stop
recording, select menu item: File > Data > Close Data File. The Status window will indicate that
the file is closed.

For further information on data file formats refer to Chapter 10 Data Collection

4.7 Sampling Rate
Menu Item: Video > Mode > * can be used to select the required sampling rate. The icon

button on the EyeCamera window tool bar can be used to sequence through the operating modes
(SetUp – High Precision – High Speed – SetUp). Important: Be sure to let the video mode
stabilize for a few seconds, before clicking the button again. Refer also to Chapter 10 Data
Collection.

4.8 Frequently Used Settings
You can use the settings file startup.txt that is located in the folder named “Settings” to

specify frequently used settings. For example, you may wish to specify brightness and contrast
settings applicable for your subject population. When ViewPoint is launched it loads in the content
of this file, which can reduce setup time.

Page 24

4.9 Preferred Window Layout
A preferred startup window layout can be saved using menu item: File > Settings > Save

Window Layout. This can then be reloaded using the load settings menu item. Alternatively the
contents of the saved settings file can be added to the startup.txt settings file so that your preferred
window layout is set each time that you launch ViewPoint.

4.10 Accelerator Keys
Accelerator keys are used to make menu selections with the keyboard, rather than the

mouse. The most current list can always be found within ViewPoint by selecting menu item: Help >
Info, and ShortCuts. The circumflex character ’^’ represents the Control key held down as a
modifier key.

The user can associate an FKey with a CLP command action. This is done via the CLP
interface (see section 13.23.1); for example:
 FKey_cmd 11 dataFile_Pause
 FKey_cmd 12 dataFile_Resume

 These associations can be viewed in the Info panel: menu Help > Info > ShortCuts tab.
Refer to 14.23

4.11 Printing
Many of the ViewPoint windows can be printed using menu item: File > Print > … To include

the current date and time on the prints, check menu item File > Print > DateTimeStamp
Printouts…

Note: you may want to select Freeze before Print to prevent pull down menu
occlusion.

Chapter 5 Locating the Pupil and Glint
The EyeCamera window displays the video-image of the eye, as well as overlay-graphics

that graphically provide information about image segmentation and performance. This is shown in
Figure 9: The overlay graphics include: thresholding results (e.g., green dots indicating dark areas),
pupil location and diameter calculation results (yellow oval fit to pupil), corneal reflection location
results. The mouse is used in this window to pull (drag-out) a rectangle to define a limited search
area, sometimes called a gate, for both the pupil and glint (see 5.5 Setting the Search Regions)

Figure 9: EyeCamera Window

Search regions are defined by dragging out a rect

5.1 Feature Method
A feature is any content in the video image that ca

include the dark pupil and the bright corneal reflection, i
allows the experimenter to select which features to use.
of the Controls window. The feature methods fall into tw
methods and multiple data point methods. Which metho
through experimentation.

The single data point methods, for example using
Glint Location only are sensitive to slight sideways hea
is normally useless, but is included for educational purp

The multiple data point method uses the Glint-Pup
Pupil Search Area Adjustment
.

o

Pupil-Glint Offset Adjustment
Glint Search Size Adjustment
Lock Search Area Adjustments
Toggle Show Threshold Dots
Operation Mode Toggle
Freeze Video
Page 25

angle with the mouse.

n be identified, located and tracked; these
e., glint. The Feature Method combo box
This combo box is on the Video Image tab
o basic categories: single data point

d to use is probably best determined

 Pupil Location only or specular corneal
d movements. The Glint Location method
ses.
il Vector Difference between (i) the center

Page 26

of the pupil and (ii) the center of the specular corneal reflection. This is more robust against small
movements of the subject within the tracking apparatus. The corneal reflection (CR) and the dark
pupil (DP) move together as the head moves (translates in the x-y plane that is normal to the
optical axis of the camera). By taking the vector difference between these two signals, a relatively
translation-invariant point-of-regard eye tracking system can be achieved.

The disadvantages of the Glint-Pupil Vector method are (a) there are now two sources of
video and segmentation noise instead of one, (b) given a change in viewing direction, the vector
variation is smaller than the variation of the pupil (or the glint) alone. The result is a lower signal to
noise ratio. Moreover, the vector method is sensitive to a different type of translation error. The
Glint Location and Pupil Location methods are particularly sensitive to translation of the head in a
horizontal (sideways, x-axis) or vertical (up/down, y-axis) direction and less sensitive to in-and-out
(closer or farther from the camera, z-axis) movement of the head. By contrast, the Glint-Pupil
Vector method is robust against x-axis or y-axis movement, but is more sensitive to z-axis
movement of the head, because this affects the length of the calculated vector; that is, the vector
becomes shorter as the head is moved backward away from the camera. This is particularly true
when the camera is close to the eye, because the angular field of view is wider. If a more remote
camera is used it will be less sensitive to Z-axis variation.

The Feature Method combo box also includes a Slip Compensation method described in
section 5.3, and data Simulation options described in section 5.4.

5.2 Noise

The major problem that the user will face is to increase the signal to noise ratio. In the Glint-
Pupil Vector mode, the basic measure of signal is the length of the vector from the center of the
pupil to the center of the glint. Noise comes from many things, for example: eyelid droop, eye
blinks, extreme direction of gaze angles that produce a reflection from the less smooth sclera
(white part of the eye), shadows, extraneous specular reflections, as well as the internal electrical
video noise.

The first most obvious way to increase the signal is to move the camera closer or zoom in,
so the pupil to corneal reflection difference vector appears larger in the EyeCamera window. The
trade-off here is that smaller head movements can move the eye out of the view of the camera.
The mapping function is calculated based on the calibration data, and it is only as good as the
calibration. There are many sources of non-linearity. Consequently, mapping the raw eye-image-
feature data to direction-of-gaze requires a sufficiently sophisticated non-linear mapping function.
Obviously, if the subject is not looking at the calibration point when the data is sampled, then the
calibration function that is calculated is not going to produce accurate direction of gaze information.

5.3 Automatic Slip Compensation
This method combines the advantages of the larger signal space and reduced signal noise of the

Pupil Location method, together with the translation-error robustness of the Glint-Pupil Vector
method. Select SlipCompensation from the Feature Method pull down menu on the Controls

Page 27

window VideoImage tab. Note: do not confuse this with calibration Slip Correction.

5.4 Simulation of Gaze
5.4.1 Manual Simulation

The user can use the mouse to simulate position of gaze. Select Manual Simulation from
the Feature Method pull down menu on the Controls window VideoImage tab. Click and hold the
mouse button in the GazeSpace window. Note that the smoothing operation is still applied, so
unless smoothing is set to one (turned off) it may take several clicks at a location before the gaze
point indicator moves to the location of the mouse. The pupil and glint quality codes are set to
best-quality (as soon as the user moves the mouse in the GazeSpace window) so that subsequent
operations are not impeded. Note: the eye video must be frozen.

5.4.2 Pattern Simulation (only on special versions)
This provides simulated eye positions data in the form of a continuous test pattern that is

useful for developing and debugging interfaces, such as layered SDK program interfaces, serial
port transfers, Ethernet client / server connections, etc. (Note this is designed to replace the
option: Interface > Serial Port > Send Test Pattern, with a more general, earlier stage, simulator).

5.5 Setting the Search Regions
The eye tracker’s performance is significantly increased as the size of the search areas is

reduced. Limiting a search area also provides a convenient way to eliminate areas with video
noise, extraneous specular reflections or dark shadow areas, any of which may confuse the
location process. Buttons on the side of the EyeCamera window are used to select the adjustment
mode for:

pupil search area,
glint search size, or
pupil-glint vector offset.
These top buttons act like “radio buttons”, so only one selection may be made at a time.

Depending on which mapping mode is selected, the user can easily adjust any of these by simply
using the mouse to drag out the rectangle or vector within the EyeCamera window, as illustrated
in Figure 8:Thresholding to identify the dark pupil

You can lock the adjustments to protect them from accidental changes by selecting the “Lock
all adjustments” icon button.

When the mapping feature mode is set to Pupil Location, the pupil is found by searching for
the dark region within the pupil search area. To adjust this area, first press the button to select
pupil search area adjustment mode, then use the mouse in the EyeCamera window to drag out
the smallest rectangle that catches the pupil over its full range of movement.

When the mapping feature mode is set to Glint-Pupil Vector the large pupil must be found

Page 28

first as above, then the smaller corneal reflection is searched for relative to the pupil:
Make pupil scan area and pupil threshold adjustments to get a good lock on the pupil

boundaries. Make sure that the software keeps a good lock on the pupil as the subject looks at the
four corners of the screen.

Press the button to select pupil-glint offset vector adjustment mode, then use the mouse in
the EyeCamera window to drag out the offset vector: drag a line from the center of the pupil to the
center of the corneal glint.

Press the button to select glint search size adjustment mode, then use the mouse in the
EyeCamera window to drag out smallest rectangle that catches the glint at all possible eye
positions. Because the glint search size moves relative to the calculated center of the pupil, the
absolute placement of the glint search size specification rectangle with the mouse is not important,
only its size is important.

The oval fit algorithm will continue to fit the pupil beyond the limits of the pupil search area.
Consequently, the pupil search area can be substantially smaller than may initially be imagined.

5.6 Brightness and Contrast Adjustments
The default values of the video image Brightness and Contrast should provide good

operation for most subjects when used with the close focus camera system provided by Arrington
Research. However, with other camera configurations you may need to make fine adjustments.
Also, subjects with very dark iris pigmentation may need the brightness reduced slightly. Adjust to
provide optimal segmentation of the pupil and iris with gradually varying gray scale. High contrast
is not as good as a large range of gray scale values.

5.6.1 Video AutoImage
The AutoImage check box located on the Controls Window Video Image tab. When

checked ViewPoint will automatically adjust the brightness and contrast values to optimal settings.
Only the region within the pupil scan area is examined, so the pupil scan area rectangle must be of
sufficient size for the algorithm to sample a range of gray levels, otherwise the algorithm will fail.

5.7 Thresholding and Setting the Scan Density
Thresholding
The program scans over the video image for the dark pupil and / or for the light corneal

reflection. Adjusting the Threshold sliders on the Controls window: Threshold group controls
which luminance values to include or exclude. The pupil threshold slider adjusts the threshold level
(sensitivity) for the pupil. Moving the slider to the right raises the dark pupil threshold ceiling,
allowing more (lighter) gray levels to be counted as part of the dark pupil. The glint threshold slider
adjusts the threshold level (sensitivity) for the white corneal reflection. Moving the slider to the left
lowers the light reflection threshold floor, allowing more (darker) gray levels to be counted as part
of the reflection.

Page 29

Clear focus is not always optimal for obtaining good segmentation, because display screen
reflections over the pupil can sometimes confuse the image segmentation process. Also,
defocusing can cause the specular corneal glint to appear larger, which can make it easier to
locate.

5.7.1 Setting the Scan Density
The resolution at which the program samples pixels in the video image is adjusted by the

Scan Density sliders. The finest resolution is with the slider set to the left, as the slider is moved to
the right, only every n'th pixel is examined, where n is the number of clicks to the right. The
ViewPoint EyeTracker ® works by isolating the pupil and corneal reflection in the video image.
To segment the image properly, the intensity-threshold levels must be appropriately set. The pupil
and the corneal reflection are located by first taking the mean position of all sample points within
threshold limits. The spatial resolution of the sampling may need to be adjusted to optimize speed
or accuracy. Moving the slider to the right increases the sample spacing (coarse) which reduces
the sampling resolution and correspondingly the number of dots shown. Moving the slider to the left
increases the resolution (fine). The result of the sampling resolution is graphically displayed when
the Show Threshold Dots button on the EyeCamera Window or Menu item Video > Show
Threshold Dots is selected.

Note: It takes time to scan pixel values and to paint them. It is very useful for
determining what Segmentation Threshold and Scan Resolution settings are optimal. Once
optimal settings have been found, the scan density should be reduced as far as possible to
reduce the computational burden. If fine scan resolution and a large scan area is required,
then the Show Threshold Dots may be turned off to remove the computational burden of
painting the colored dots.

5.7.2 AutoThreshold
Pressing the AutoThreshold button automatically sets desirable Light-Reflection and Dark

Pupil threshold levels. After this is done, the user may want to make further adjustments, which is
easily done using the sliders.

5.7.3 Positive Lock Threshold Tracking
Positive Lock provides continuous automatic feature threshold adjustment. To activate this

feature select Positive-Lock Threshold-Tracking check box on the Controls Window Video
Image tab. Note: this only adjusts the pupil threshold; the glint threshold must be adjusted
manually.

5.8 Criteria
ViewPoint provides several criteria for accepting or rejecting data. Using these wisely and

judiciously can substantially improve the performance in many situations. These can help tag
messy blink data so that it can be easily eliminated from post-hoc analysis. They can also improve
real-time performance and help protect equipment; for example if a galvanometer is connected to
the eye positions signals. The following sections discuss various criteria available.

Page 30

The circle fit around the pupil in the EyeCamera window changes from yellow to orange
when the specified criterion is violated.

5.8.1 Pupil Aspect Criterion
The program can reject a dark segmented area as being the pupil based on its ability to fit a

circle to that area. If the ratio of the minor-axis to the major-axis is less than the criterion level, then
that area is rejected. If you are going to use this feature, then typically a criteria level of 0.6 is a
good place to start. Enable the Pupil Aspect Ratio time-plot in the PenPlot window to graphically
view the criterion level relative to the pupil aspect ratio data-value in real-time. Adjust the Pupil
Aspect Criterion slider so that the threshold bar is below the data value for all potential eye
movements, but above that for blinks. The pupil oval fit changes color from yellow to orange when
criterion is violated.

The variation of aspect ratio over the range of eye movements will depend on the viewing
angle of the camera. The eye image in Figure 9: was taken with a micro camera (arranged as in
Figure 1: Schematic of the ViewPoint EyeTracker® System). The pupil will appear more oval as
the angle increases between the optical axis of the camera and the line of sight of the eye.

5.8.2 Width Criteria
ViewPoint also provides Minimum Pupil Width and Maximum Pupil Width criteria. Enable

the Pupil Width time-plot in the PenPlot window to graphically view these criteria levels relative to
the pupil width data-value in real-time. Adjust the Maximum Pupil Width and the Minimum Pupil
Width sliders so that the data value is between the threshold bars for all potential eye movements.

5.9 Step-by-step guide for Glint-Pupil Vector method

This section assumes that you have successfully completed the Chapter 4 tutorial on
locating the pupil.

In the Controls window select Glint-Pupil Vector.
Ask the subject to fixate at the center of the display screen. If self testing, move the

EyeCamera Window to the center of the display screen.
Select the Pupil Search Area Adjustment icon at the top right of the EyeCamera Window,

illustrated in Figure 9:
Use the mouse to drag out a rectangle that limits the area in which to search for the pupil. In

particular, use this to eliminate dark shadow areas that could be confused with the pupil. If
necessary adjust the brightness and contrast settings and move the illuminator to provide uniform
illumination over the eye image.

Press the AutoThreshold button on the Controls window. If necessary, adjust the dark pupil
threshold setting in the Controls window to ensure that the green dots appear only in the pupil and
that the yellow oval outlines the pupil and is fairly circular. (Note that the Status Window displays
the oval’s aspect ratio, 1 = perfect circle) The yellow oval indicates where the program has located
the area of the pupil.

Page 31

If too many dark areas other than the pupil have green dots, adjust the dark pupil threshold
slider to the left. Alternatively, if insufficient pupil area is being identified as dark (with green dots),
adjust the dark pupil segmentation threshold slider to the right.

After the pupil has been isolated, adjust the scan density to use the minimum number of dots
that can reliably and consistently locate the pupil. Correct thresholding of the dark pupil is
illustrated in Figure 8:.

Ask the subject to look at each of the four corners of the Stimulus window to ensure that the
pupil remains in the search box and to ensure accurate thresholding for all potential eye
movements. i.e. the yellow oval outlines the pupil and is fairly circular. If self testing move the eye
camera around to the four corners of the display to view the effects of pupil segmentation at
different position of gaze.

Select the Pupil-Glint Offset Adjustment icon on the EyeCamera window, illustrated in
Figure 9: Use the mouse to drag out the offset vector from the center of the pupil to the center of
the corneal glint.

Press the button to select the glint search size adjustment mode, and then use the mouse in
the EyeCamera window to drag out smallest rectangle that catches the glint at all possible eye
positions. Because the glint search size moves relative to the calculated center of the pupil, the
absolute placement of the glint search size specification rectangle with the mouse is not important,
only its size is important.

After the glint has been isolated, adjust the scan density to use the minimum number of dots
that can reliably and consistently locate the glint. Correct thresholding of the glint is illustrated in
Figure 9:

Ask the subject to look at each of the four corners of the Stimulus window to ensure that the
glint and pupil both remain in the respective search boxes and to ensure accurate thresholding for
all potential eye movements. i.e. the yellow oval outlines the pupil and is fairly circular and the red
oval outline the glint and is fairly circular. If self testing move the eye camera around to the four
corners of the display to view the effects of pupil and glint segmentation at different position of
gaze.

At any point the experimenter can toggle the image display On/Off. When Off it provides a
still image of the eye to aid identification of successful thresholding. This is accomplished by either
(a) pressing the Freeze Video icon button at the bottom right of the EyeCamera window, or (b) by
selecting the menu item: Video > Freeze Video. When frozen, the icon button will be outlined in
red and a check mark appears next to the menu item. The EyeCamera window will also indicate
"*** FROZEN ***" in the title bar.

Scan adjustments can be locked by selecting the icon on the EyeCamera window tool bar.

5.10 Alternative Segmentation Methods
Various algorithms are available for determining the pupil center. Lighting conditions and

performance considerations will determine which method is best for a particular job. The menu

Page 32

item: Video > Pupil Segmentation Method > *** is used to make a selection.
5.10.1 Centroid

Centroid means “center of mass”. This is a simple method that may be useful if there is
difficulty discriminating the edge of the pupil, or if the pupil is very small. To use this method select
the

The pupil location is at the average position of all points above threshold, weighted
according to how much above threshold. Points below threshold are weighted more if they are
darker. This centroid location is used as the starting point for its additional processing by the more
sophisticated methods discussed in the next sections. .

5.10.2 Edge Trace (only on special versions)
The pupil location is the center of the extreme values obtained during an edge trace around

the pupil, starting from the point at 3 o'clock from the weighted centroid. This algorithm first scans
rightward to find the right edge of the pupil. Next the algorithm traces the edge of the pupil, using
the dark pupil threshold limit as the edge criterion. The extreme positions obtained during the edge
trace are used to fit an oval, the center of which is taken to be the pupil location.

5.10.3 Oval Fit
This method scans the area around the centroid for extreme left, right, top and bottom values

that are used as the coordinates of an unrotated (flat) bounding rectangle. The center of this
bounding rectangle is taken as the center of the pupil. This method is more robust than the centroid
method alone, and it takes less cpu time than the general rotated Ellipse method discussed next.

5.10.4 Ellipse (only on special versions)
This provides a general rotated ellipse, so that a good fit is made to oblique pupil images. It

requires significantly more cpu time that the Oval Fit method, but in some situations it can provide
a more accurate calculation for the pupil center. Because there are more degrees of freedom, the
ellipse may appear more wobbly or jelly-like than with the Oval Fit method, however the pupil
center calculations is usually more accurate, because more points are used for fitting.

5.10.5 Glint Segmentation Methods
The previous sections have focused segmentation and identification methods for the pupil. It

is also possible to change the default segmentation method for the glint, though it is not normally
required. This is done with menu item: Video > Glint Segmentation Method > ***.

5.11 Pupil Scan Area Shape Options
The user can specify whether to change the scan area for the pupil to either rectangular or

elliptical using CLP commands. Elliptical scan area can be effective at eliminating dark spots that
the software may interpret as a pupil. Refer to 14.6.

Page 33

Chapter 6 Calibration
Before calibration, the pupil and corneal reflection must have been isolated with appropriate

threshold settings.

6.1 Raw Data Without Calibration
The ViewPoint EyeTracker® starts up in a coarsely calibrated state that provides

precise timing of raw (uncalibrated) eye movements. This is sufficient for many applications that
can utilize relative eye movements, such as quadrant-wise “preference of looking” tasks. If your
application requires more precise gaze point information, then further calibration will be required.

6.2 Calibration Description.
Raw pupil and corneal reflection locations do not indicate where the subject’s position-of-

gaze is. These raw data points in EyeSpace™ (i.e. the video-display space) must be
mathematically mapped to the subject’s GazeSpace™ (i.e. the visual-stimulus space).

When using the Glint-Pupil Vector method it is still important to obtain separate calibrations
for each individual, because of individual variations in corneal curvature.

Calibration stimuli are presented to the subject in the Stimulus window and also indicated to
the user in the GazeSpace window. The subject should be instructed to foveate each point in turn,
so the system can determine appropriate coefficients for the mathematical mapping. The
calibration mode is “Tunnel Motion” calibration, where shrinking motion of a rectangular frame
captures the subject’s visual attention and smooth pursuit brings the subject’s gaze point to each of
the desired calibration spots in turn.

6.3 Calibration Carryover.
There substantial similarities between the eyes of different people, so it is sometimes

possible to calibrate the system to one person, who is easy to calibrate, and then obtain
reasonable data using that calibration for another person – though you will probably at least want
to do a Slip Correction (see § 6.8).

When using the Glint-Pupil Vector method you may still want to obtain separate calibrations
for each individual, because of individual variations in corneal curvature.

6.4 Calibration Procedure (Head Fixed)
For a step by step guide to successful calibration refer to 4.5. Calibration

Menu Item: Video > Mode > High Precision (30 Hz 640 x 480) should be selected prior to
starting calibration to ensure the highest degree of accuracy. The icon button on the EyeCamera

Page 34

window tool bar can be used to sequence through the operating modes (SetUp – High Precision
– High Speed – SetUp).

The EyeCamera window can be completely hidden or minimized at any time during the eye
tracking process without disrupting video capture.

Calibration is started by pressing the Auto-Calibrate button in the EyeSpace window. If
menu item: Stimuli > Stimulus Window Properties > AutoShow on Calibrate is also selected,
then the Stimulus window will automatically be displayed full screen on the primary monitor. The
option should be turned Off when assigning the Stimulus window on a secondary monitor.

The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to
the start of the calibration process. This can be suppressed or the display time adjusted via the
Advanced section in the EyeSpace window.

The automatic calibration sequence may be stopped by pressing the STOP Calibration
button in the EyeSpace window. Pressing the ESC key will both stop the calibration and remove
the full screen display if it is on the primary monitor.

The number of calibration points is selected by the user using the pull-down menu item in the
EyeSpace window. The number of calibration points may be set to: 6, 9, 12, 16, 20, 25, 30, 36, 42,
49, 56, 64 or 72. A higher number of points may help with subjects that have corneal abnormalities
or difficulty foveating. The current setting is indicated by a check mark. A setting of 12 or 16 is
usually quite adequate. With fewer calibration points, good calibration accuracy is essential for
each point. When a large number of points are used, the effect of any single point will be less. In
general try to use at least 9 points to obtain a good calibration.

Speed of presentation of the calibration stimulus points can be adjusted via the Advanced
section in the EyeSpace window.

6.5 Assessing Calibration Success
A quick check of calibration accuracy may be done by asking the subject to look at particular

points on the stimulus and using the GazeSpace window to verify that the gaze point matches up
with the points looked at.

The arrangement of calibration data points in the EyeSpace window provides a method of
assessing how good the calibration data is.

Successful calibration will be indicated by a relatively rectilinear and well separated
configuration of dots. The mapping method (selected in the Controls Window) determines how
these data points are plotted. If Pupil Location is selected, then the plot shows green dots
corresponding to the locations of the pupil at the time of calibration point capture. The dots are
joined by yellow lines that indicate the spatial relationship between the dots. If Glint-Pupil Vector is
selected, the plot shows blue dots corresponding to the locations of the pupil at the time of
calibration point capture, but now they are shifted so that they are all relative to the corneal glint
(red dot) that is plotted at the center of the data point chart. The dots are joined by yellow lines that
indicate the calibration index number (which is the order in which they are presented if sequential

Page 35

presentation order is selected).
The EyeSpace window is shown in Figure 10:.
The top part of the window shows a 320x240 graphics well that represents of the coordinate

space of the EyeCamera window. If Pupil Location or Glint Location modes are selected, a black
square shows the current pupil location, or the current glint location, respectively. In Glint-Pupil
Vector mode the black square shows the vector difference between the pupil and glint locations,
with the glint end of the vector fixed at the red dot.

For ease of data point viewing, the calibration data points and real-time feature points (pupil
and / or glint) can be zoomed in or out using the Zoom slider, and can easily be moved by
dragging with the right mouse button. The Re-center button repositions the data points in the
center of the graphics well.

6.6 Omitting Individual Calibration Points
The Omit button in the EyeSpace window will allow the user to omit an individual calibration

data point from the mapping calculations. This may be required if for some reason an individual
calibration point is far out of the rectilinear distribution and re-present is not successful. Use the
data point slider or mouse click to select the required data point. Pressing the Restore button
restores the omitted point.

Figure 10: EyeSpace Window

Page 36

6.7 Re-presenting Individual Calibration Data Points
The data point slider allows the user to select individual (e.g., stray) calibration points to be

recalibrated. The active data point is highlighted in the graphics well. Data points can also be
selected by left clicking the mouse. To re-present the selected (stray) calibration point, press the
Re-present button in the GazeSpace window.

The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to
the location of the calibration point. This can be suppressed or the display time lengthened via the
Advanced section in the EyeSpace window or by using settings files. Refer to Chapter 12.6.

6.8 Slip Correction
During data collection, the subject may move in the X and Y planes such that the measured

position of gaze no longer corresponds to actual position of gaze. This type of problem can usually
be corrected easily by translating (shifting) the calibration data set. First be sure to select (click with
the mouse) a good calibration point near the center of the display. The Slip-Correction button in
the EyeSpace window will re-present the currently selected calibration point to the subject and
automatically adjust the remaining points to compensate for the measured slip in the (x,y) plane.

The message “Get Ready” will appear briefly on the screen to draw the subject’s attention to
the location of the calibration point. This can be suppressed or the display time lengthened via the
Advanced section in the EyeSpace window or by using settings files. Refer to Chapter 12.6.

Slip-Correction is generally not required when using the pupil-glint vector difference
method; it is most useful when using the pupil-only or glint-only methods.
Note that Slip-Correction is a different from Slip-Compensation feature method
described in section 5.3.

6.9 Instructions to Subject
 For auto-calibration, it is usually preferable to randomize the presentation order of the

calibration points, which is the default setting. With Sequential Presentation Order of calibration
stimulus points, a leading source of calibration error is that the subject anticipates the presentation
location of the next point, before the current stimulus point has finished. Explain to the subject that
it is important to fixate on the calibration stimulus point until the point has completely disappeared.

The calibration stimulus presentation order type may be changed. Press the Advanced
button in the EyeSpace window for access to the controls. See section 6.12.1.

6.10 Dominant Eye
If the subject is known to have a dominant eye, a better calibration is obtained if this eye is

used.

Page 37

6.11 Saving Calibration Eye Images
Troubleshooting calibration difficulties can be made easier by viewing the eye image at the

time the calibration data point is taken. The following CLP command saves these eye images in a
folder named “Calibration”:

SaveCalibrationEyeImages Yes

This command will also create the folder if it does not exist.

6.12 Advanced Calibration Controls
The user can change the default color settings of the calibration stimulus rectangles and the

background using the Advanced Calibration Controls window. This window is reached from the
Advanced button on the EyeSpace Window.

The Duration slider specifies the approximate duration in milliseconds of each of the
concentric contracting “tunnel motion” calibration stimulus rectangles.

6.12.1 Presentation Order
The Presentation Order pull-down menu allows the user to choose to present the

calibration stimulus points in one of three orders. The default presentation mode is Random.

Sequential: Calibration stimulus rectangles are presented from the top left hand corner of
the screen to the bottom right hand corner of the screen.

Random: Calibration stimulus rectangles are presented in random order. The series is re-
randomized every time the set finishes, so that there is a new random order for the next loop.

Custom: Using CLP commands the user can specify the presentation order of the calibration
stimulus rectangles. See section 14.8.14 to 14.8.16.

6.12.2 Snap and Increment Calibration Modes
If manual calibration is preferred, then the user can select Snap Presentation mode. In this

mode the currently selected calibration data point is active and the Re-present button will
immediately perform the calibration based on the eye position at the time. There is no warning and
no calibration stimulus point presented.

When in this mode the behavior of the Re-Present and the Slip-Correction
buttons/commands is changed as described and is indicated by the appearance of an asterisk (*)
on these buttons.

When operating in this mode the user can choose whether to automatically advance to the
next calibration data point by selecting the Auto-Increment button. This mode is indicated by the
appearance of *++ on the Re-Present and the Slip-Correction buttons. If Auto-Increment is not
selected then the selected calibration point will not change. The data point advanced to is
determined by the Presentation Order mode selected.

Page 38

6.12.3 Adjusting the Calibration Area
The user may want to adjust the size and position of the area within which the calibration

stimulus points are presented. This is especially useful when part of the display screen is
occluded, as in fMRI environments. In the Advanced Calibration Controls Window press the
Adjust Calibration Area button. Refer to Figure 10:EyeSpace Window. This opens the Regions
Tab on the Controls window. Use the left mouse button in the GazeSpace window to drag out the
required size and position of the calibration area. The size and position coordinates are displayed
in the Regions tab and in the GazeSpace window. Refer to section 14.8.26 for details of command
calibrationRealRect. The Revert button will undo the last change and the Default button will
return the calibration areas size to the default setting.

6.13 Custom Calibration Point Positions
ViewPoint now allows the user to specify the locations of the calibration stimulus points.

This can be very useful if you need to avoid certain visual obstacles. Loading in the custom
calibration stimulus point locations does not automatically switch the program to use these points.
This is done with a separate command calibration_CustomPointsUsed True, see section 14.8.22.

The nearest-neighbor grid-lines in the EyeSpace are only useful if the pattern of stimulus
points is in a rectilinear grid. The nearest-neighbor grid-lines are not automatically drawn when this
option is used, because the points could be in any configuration. The drawing of these lines can be
toggled on/off with CLP commands. See section 14.8.24.

The calibration point index is in column-major order, which means that the points run down
the columns before go to the next row. For example:
 1 4 7 10

2 5 8 11
3 6 9 12

6.14 Geometry Grid
The Geometry Grid is used for calculating the eye movements in degrees (rather than

screen coordinates), and for helping the user visualization of the size of the stimuli in the display.
First, open the Stimulus window full screen on the selected monitor. Then select menu item:

Stimuli > Geometry Setup to display the Apparatus Geometry window and to show the
geometry grid lines on the Stimulus window.

The grid lines are presented as light blue lines separated by one degree of visual arc. The
grid spacing depends on the viewing distance and also on the horizontal and vertical size of the
image of the Stimulus window on the monitor. ViewPoint. provides an easy way to take these
measurements and to enter them, so that the program can perform the trigonometry and display
the grid lines accurately.

The Stimulus window should be made full screen size on the display that will be used for

Page 39

visual stimulus presentation. If this has not been done, the Stimulus window will be set to full
screen on the primary monitor when the Apparatus Geometry window is raised. When the
Apparatus Geometry window (see Figure 11:) is displayed, the Stimulus window will display two
thick red lines, one vertical and one horizontal. The Apparatus Geometry window contains three
sliders. The user should adjust these sliders to indicate:

The viewing distance from the subject’s eye to the center of the display screen,
The lengths of the horizontal and vertical red lines in the Stimulus window.

The units of measurement are arbitrary, but they must be consistent, e.g. all measurements
in millimeters, or all measurements in inches. The Apparatus Geometry window also displays
various numerical calculations that may be useful.

After adjustments have been made, the measurements should be saved by pressing the
Store button. Subsequent runs of ViewPoint will maintain the stored settings.
Note that the one-degree lines are accurate on the Stimulus window, however the “one-degree”
lines on the GazeSpace window are scaled and may show a miniature view of the Stimulus
window.

The geometry gridlines can be displayed on the Stimulus window and on the GazeSpace
window without the Apparatus Geometry window being active, by using the check boxes on the
Controls window DataDisplay tab.

Figure 11: Apparatus Geometry Window

Page 40

Chapter 7 Cursor Control
The CursorControl feature will allow the subject to move the cursor with the position of gaze

of their eyes. It only works with head fixed hardware (e.g., the QuickClamp) or with head mounted
display (HMD) hardware.

Select menu item: Interface > CursorControl > Eye Moves Mouse. The Status window will
display CursorControl: ON. Menu item Interface > CursorControl > Fixation Clicks Buttons
when toggled ON will cause a button click event to be issued when the fixation duration reaches a
pre-set dwell time. The “dwell time” in seconds can be specified using the MouseClick If Fixated
slider in the Data Criteria panel of the Controls window and also specified using settings files.
Menu item Interface > CursorControl > Blinks Clicks Buttons when toggled ON will cause a
button click event to be issued when the eye tracker detects a blink.

Note: Increasing the amount of smoothing will substantially increase the usability of the
cursor.

Figure 12: Status Window

Page 41

Chapter 8 Ocular Torsion

8.1 Introduction to Torsion
Ocular Torsion is the rotation of the eye ball about the line of sight, i.e. rotation about the z-

axis. ViewPoint measures ocular torsion by determining the rotation of the iris striation patterns. A
representative striation pattern sample is stored as the template (presumably taken when the eye
was at zero degrees torsion). Subsequent samples are compared against the template to
determine how much rotation has occurred.

To open the Torsion window Select the menu item: Windows > Torsion. The Torsion
window is shown in Figure 13: below. To start torsion measurement, press the Start button. When
torsion is being calculated, the EyeCamera window will contain additional overlay graphics that
indicate the circle along which the iris striations are sampled, as well as the starting point on the
circle for the sample array. These additional overly graphics are shown in Figure 14: below.

Figure 13: Torsion Window

Graphic well descriptions:

• Correlation between the current
sample (middle graph) and the
template (bottom graph).

• Current sample of iris striations.
• Samples that were stored as the

template.

Page 42

Figure 14: EyeCamera window with Torsion ON

The samples of iris striations are taken along a circle around the pupil. The radius of the
sampling circle is adjusted using the Radius slider in the Torsion window. The user should adjust
the radius to a location where there is good variation in the iris. Regularly periodic variation of the
iris striations, as like a sine wave, does not allow identification of rotation beyond the period of
oscillation, so an irregular marking is better to track. The location of the sample circle is drawn in
the EyeCamera window.

Important: fixation is required for accurate measurement of ocular torsion.

The threshold dots are automatically turned off when using torsion. This is important
because the threshold dots are painted in the video image before the torsion sample is taken and
this can adversely affect the performance of the torsion calculation.

The amount of calculated torsion in degrees is displayed in the Torsion window, the
PenPlot window and stored in the data file

8.2 Procedure for Measuring Torsion
This section describes the procedure for obtaining ocular torsion measurements using

ViewPoint. It is assumed that the user is familiar with setup and thresholding as described in
Chapters 0 and Chapter 5.

Select the menu item: Windows > Torsion to display the Torsion window.
Ensure Auto-Set After Adjust is checked.

Page 43

Ensure that the subject is in a comfortable position that will allow them to remain still for the
duration of the experiment.

1. Press the START button on the Torsion window.
Adjust the camera so that the video image of the subject’s pupil is in the middle of the

EyeCamera window and the iris is in sharp focus.
Adjust the brightness and contrast if necessary. Threshold the image.
Instruct the subject to fixate at a given point.
Using the Radius slider, adjust the size of the sampling circle to a location where there is

strong irregular variation in the iris striations.
Ensure that the sample area circle does not include specular reflections, the eye lid, and any

other non-rotating areas of brightness or shadowing.
Press the Set Template button, when the subject’s eyes are at zero torsion.
Collect data as usual.

Notes: When the Real-time graphics check box is checked, the graphics windows are
updated with every new field. To reduce the computational burden, uncheck Real-time
graphics. This will cause the graphics to be updated every 30th field. This does not affect the
real-time data stored in the data file.

8.3 Torsion Demonstration Test
Normally the sample array starts from the 3 O’clock position on the circle and proceeds to

sample pixels along the circle in a clock-wise direction. This starting point can be adjusted using
the Angle slider. This is shown in the EyeCamera window by a line drawn from the center of the
pupil to the point on the edge of the circle where sampling begins. (Shown in Figure 17) This can
be used for testing and demonstrating the torsion calculation as follows:

Uncheck Auto-Set After Adjust.
Adjust the sample angle using the Angler slider.

As the pattern shifts away from the template pattern, the correlation peak shifts and the
torsion calculation changes.

When not performing this demonstration, Auto-Set After Adjust should always be checked,
since a new autocorrelation template will be required if the radius of the circle and angular starting
point on the circle is adjusted. The autocorrelation template can also be re-fixed manually at any
time by pressing the Set Template button.

 Section 14.17 describes the torsion commands in detail.

Page 44

8.4 Overriding the Default Torsion Parameters
The default setting is for ViewPoint to look for torsion over +/- 9 degrees. Beyond this will

cause a “Range Error” to be reported in the Torsion window. The default precision is 0.5 degrees
of arc. These defaults are in place as a trade off between range of torsion measured and resolution
due to the high computational burden of the calculations performed.

Since the eye does not normally rotate about the line of sight more then about 9 degrees
there is usually no need to perform the auto-correlation past this range, because increasing the
range increases the cpu load unnecessarily. There are some situations in which this range needs
to be increased, such as when the entire head is rotated.

The user may adjust the torsion parameters with settings file commands; however, the user
is responsible for testing that the combination they choose will provide valid results. Valid
combinations should work up to +/-20 degrees at 0.5 resolution.

Page 45

Chapter 9 Stimulus Presentation (Head
Fixed)

This section describes stimulus presentation options using the ViewPoint EyeTracker® PC-
60 head fixed (QuickClamp) system or head mounted display (HMD) module systems.

9.1 General
The eye tracker is integrated with the ability to display stimuli. By selecting menu item: File >

Image > Load Image … a stimulus picture (BITMAP file) can be chosen using the standard open
file dialog box. The picture will appear in both the GazeSpace window and in the Stimulus
window. ViewPoint assumes that the BITMAP (.bmp) files are stored in the folder named
“Images” that is located in same folder as the ViewPoint application program. To override this,
an alternative full path can be specified via CLP command, see section 14.22.2.

Hint 1: Make the bitmap image large so to avoid smooth lines being displayed as jagged.
Hint 2: Make the bitmap image the same aspect ratio as the Stimulus window.
The user has control over how images will be proportioned when they are displayed in the

Stimulus window and GazeSpace window. By selecting menu item Viewing Source > Image
Shape >:

Actual size: the image will be displayed in the two windows at actual size.
Center: the image will be displayed actual size and centered in the windows.
Stretch to Window: the image will be scaled to fit the window.
Stretch isotropically: the image will be stretched equally in all directions, maintaining the

original proportions.
Menu item: Viewing Source > Background Color allows the user to change the

background color in the Stimulus windows. This is useful to provide “matting” color when the user
has selected the image shape to be isotropic and there is space at the sides of the sides or at the
bottom of the image.

9.2 Picture Lists
A list of picture file names may be loaded by using the settings file commands:
pictureList_Init and pictureList_AddName myImageFileName.bmp
Refer to Chapter 14.4 PictureList for a full list and description of commands.
After being loaded, this list can be randomized and sequentially presented using the

following menu commands:

Page 46

File > Image > Picture List > Next Picture List Image
Presents the next image in the currently setting file list

File > Image > Picture List > Restart PictureList Returns to the top of the currently loaded
settings file

File > Image > Picture List > Randomize PictureList Randomizes the list of images in the
currently loaded settings file.

The user can create a list of settings files. Each settings file may contain not only commands
for displaying picture images, but also for loading unique regions of interest (ROI) for each picture,
for playing a cue sound, etc. Figure 15: below demonstrates how settings files can be used very
simply to present a series of stimulus images at intervals determined by the user.

Figure 15: Picture List Example

Further examples can be found in the settings folder provided on your ViewPoint
EyeTracker® software disk.

Page 47

9.3 Using the Stimulus Window (Head Fixed Option)

The Stimulus window is the window the subject sees. Calibration stimulus points and
stimulus images are shown to the subject in this window. It is best when displayed full screen on a
second monitor!

Use the Controls window DataDisplay tab to remove or show the stimulus picture image.
When unchecked the image is removed and all you see is the plain background color selected by
the user.

Stimuli > View Source > Stimulus Window Properties > Normal Adjustable
Makes the Stimulus Window a resizable, moveable window.
Stimuli > View Source > Stimulus Window Properties > Custom Static Position
 Sets the Stimulus Window to be a custom size as specified by the currently loaded
settings file. This window is not resizable or moveable. This feature is for use with non-
standard display cards.
Stimuli > View Source > Stimulus Window Properties > Monitor 1 (primary)
 Sets the Stimulus Window to be full screen on the primary monitor.
Stimuli > View Source > Stimulus Window Properties > Monitor 2
 Sets the Stimulus Window to be full screen on the secondary monitor

Note: To use a second monitor you will need to install a second display card into your
computer and configure your computer for multiple monitors. Please refer to your computer
manual.

Stimuli > Stimulus Window Properties > AutoShow on calibrate (toggle)
automatically shows the Stimulus window and also automatically hides the cursor (only
during calibration, re-present or slip correction) when the AutoShow occurs.

9.4 Using the GazeSpace Window
The GazeSpace window is a miniature representation of the Stimulus window. The

experimenter may select from a number of ways to show and view the subject’s instantaneous
position-of-gaze, using the check boxes on the Controls window as follows:

Calib Region shows the area within which the calibration is performed, see section
6.12.3, (unless custom calibration stimulus points are enabled, see sections 6.13) and
the locations of the calibration stimulus points.

Gaze Point shows the subjects position of gaze.

Trace Lines shows the path of eye movements.

Page 48

Fixation Time displays fixation duration as the area of a circle increasing as the
duration increases.

Pupil Size will display a yellow oval corresponding to pupil size at the position of gaze.

ROI Regions displays the region of interest boxes.

GeometryGrid to display the GeometryGrid. For GeometryGrid setup details refer to
(6.4)

Raw Data to display the raw, uncalibrated data.

Picture Image to display the currently loaded stimulus picture image.

Eye movement traces are usually only presented to the experimenter in the GazeSpace

window, but they can also be presented to the subject in the Stimulus window. Presentation of
gaze information is controlled through the Controls window. Display of eye traces in the
Stimulus window is useful during setup and self testing, but is not recommended during normal
operation, since they can be very distracting to the subject. The experimenter may select from a
number of ways to show and view the subject’s instantaneous position-of-gaze.

9.5 Regions of Interest (ROI)
The stimulus area can be divided up into regions of interest (ROI, also sometimes called

areas of interest (AOI), or window discriminator boxes. These are very useful when the
experimenter wants to know categorically whether or not the subjects gaze was in a certain area.

It is possible to specify up to 100 ROI boxes (box numbers 0-99) to simplify the task of data
analysis. When the gaze position moves inside a ROI, the ROI box number is displayed in the
Status window and stored in the data file record if a data file is open. If the boxes are overlapping
and the gaze is inside multiple boxes, then both the Status window and the data file will list all of
the ROI boxes that were “hit”.

To adjust individual ROI, check the Region of Interest radio button on the Controls window:
Regions tab. Individual ROI may be selected by clicking the right mouse button inside the ROI.
The selected ROI will be drawn in red and the others in blue. Use the left mouse button to move
and resize the selected ROI. Clicking the right mouse outside of any ROI will set the adjustment
mode to the locked state. Region boxes can also be made active and locked through the Regions
tab on the Controls window. Use the slider to sequence through the RIO. Use the mouse wheel
to sequence through and add new ROI. The active ROI coordinates are displayed and updated as
you adjust the size and position both in the GazeSpace window bar and the Regions tab. The
Revert button in the Controls window Regions tab will undo the last change and the Default
button will return the ROI boxes to the start-up setting.

Page 49

9.6 Data Smoothing
The eye trace lines displayed in the GazeSpace and Stimulus windows can be smoothed

to reduce noise. The degree of smoothing of gaze calculation may be varied using the slider on the
Controls window (see Figure 9). When placed at the far left, no smoothing is performed.
Incrementing the slider to the right increases the number of previous points included in the average
calculation. A value of 4 makes attractive and useful real-time graphics. Two smoothing algorithms
can be used, in each case the number of back points equals the number set by the user. Refer to
Section 11.1.1.

Smoothing effects the real-time calculations. Because smoothing effects the velocity
calculations the saccade velocity threshold must be adjusted proportionately. Smoothing will also
affect which ROI boxes are triggered.

By default, smoothing does not influence the data values that are stored to file, because the
real-time smoothing uses a trailing average technique, whereas post hoc data analysis should use
a symmetrical smoothing technique. The user can choose to store the smoothed data by selecting
menu item File > Data > Store Smoothed Data.

Note: For post-hoc analysis it is preferable to use a symmetric smoothing kernel on
unsmoothed data.

9.7 Using the SDK, settings files and Serial Port
Interface for Stimulus Presentation
There are two ways to control the ViewPoint EyeTracker® from other applications and

other computers:
Programming functions – handled by the SDK in the DLL
Command strings – handled by the Command Line Parser (CLP) in the ViewPoint

application.
The same CLP is used for command strings received from:

Settings files that are loaded.
serial port packets of type COMMAND_LINE.
The SDK using the VPX_SendCommand function.

The SDK is described in Chapter 15, Settings Files in Chapter 12, and the Serial Port
Interface in Chapter 13. Chapter 14 lists all of the available ViewPoint features, the GUI control,
CLP command and any applicable SD function. There are many features available through CLP
commands or SDK functions only.

Page 50

9.8 Integrating with Third Party Products
The ViewPoint EyeTracker® has been integrated with many of third party experiment

generation software products. Please contact us for the latest information.

Page 51

Chapter 10 Data Collection
10.1 Sampling Rate

The ViewPoint EyeTracker® includes three modes of operation that provide flexibility in
the selection of resolution and sampling rate. Which mode you choose will depend on your
research or project requirements. However, you should always calibrate using the High Precision
Mode.

Setup Mode:
Temporal Resolution: 30Hz

 Internal Processing: 320 x 240
High Precision Mode:

Temporal Resolution: 30Hz
 Internal Processing: 640 x 480

High Speed Mode:
Temporal Resolution: 60Hz

 Internal Processing: 640 x 240
Menu Item: Video > Mode > * can be used to select the required operating mode. The icon

button on the EyeCamera window tool bar can also be used to sequence through the operating
modes (SetUp – High Precision – High Speed – SetUp). Historically, when computers were
slower, the image of the eye only appeared in Setup Mode; the other modes only displayed the
overlay graphics, to save cpu time. This is no longer the case and the term is somewhat
misleading because “setup” can be done in any of the modes. This mode may better be described
as a “low cpu” mode, nevertheless, the old terminology is retained for the present.

10.2 Saving Data to File
The ViewPoint data file is always saved as tab-delimited text, sometimes referred to as the

standard spreadsheet format, so it can be easily read by most any program, e.g. MS Excel, MS
Works, Matlab, Mathematica, etc. The file extension does not affect the internal format of the data
file. You can specify, or change the file extension whenever, and to whatever you want (e.g.: “.txt”).
You can associate the file extension with specific applications at the operating system level, so that
when you double-click the file icon, a specific application will open it.

The data file will contain information about the (x, y) gaze point, elapsed time since the last
entry, total time, pupil diameter, and a region of interest box number, etc. By default, the data files
are stored in the folder named “Data” inside the ViewPoint application folder. The default folder
can be change using command line instruction setPath, described in section 14.22.2.

To start recording data to file either:
Select menu item: File > Data > New data file…. This allows the user to open a

Page 52

data capture file, and to specify a file name using the standard Open File dialog box. Or,
Select menu item: File > Data > Unique data file … This opens a new data

capture file with a unique file name without having to go through the standard Open File dialog
box. The default extension for these files can be set using the CLP command:
dataFile_NewUniqueExtension described in section 14.2.2.

File > Data > Pause Data Capture will temporarily stop the recording of data to file while
processing continues. Data recording can be continued by toggling this menu item off. This feature
is different from menu item Video > Freeze which stops all processing and recording of data to
file. File > Data > Close Data File terminates the writing of data and closes the open file.

 The command line interface for data files is described in section: 14.2.

10.3 Data File Format
10.3.1 File header information

At the top of each data file is file header information that includes the data and time that the
data was collected, the apparatus geometry settings that can be used to obtain the gaze angle in
degrees, whether smoothed or unsmoothed data was stored, etc.

10.3.2 File records
Each line of the data file is a unique data record. The type of record is indicated by the

integer “Tag” value in the first column. The tag lets us know how to interpret the entries that follow
on that line. The record entries on the line are tab separated into column positions. The number of
columns in the eye-data record will depend upon the options selected for data collection. For
example, if torsion is not being measured there will be no such column in the data file. If running in
binocular mode, then additional data will be included for the second eye. The meaning of the
various data record tags is described in detail in section 10.3.4.

10.3.3 Synchronous vs. Asynchronous data inserts
ViewPoint provides for synchronizing eye movement data with other events and other data.

This is usually performed by inserting extra data into the ViewPoint data file. This extra data can
include Markers, Strings, and HeadTracker data. These can be inserted in two ways, either (a) on
the same line as the eye tracker data (synchronously), which makes reading into spreadsheets
much easier, or (b) on separate data lines (asynchronously), interleaved with the eye tracker data,
which allows individual time stamps for each inserted item.

A simple method of synchronization with other devices and programs is achieved through
insertion of ASCII character markers into the data stream. By default, menu item File > Data >
Asynchronous Marker Data is toggled OFF, so data markers will be synchronously added into the
data file stream, in the Marker column. If more than one character was inserted, they will appear as
a comma separated list of characters. If this menu item is checked ON, ASCII character data
markers will be asynchronously inserted into the data file stream as they arrive, with individual time
stamps, and there will be no Marker column.

By default, menu item File > Data > Asynchronous String Data is toggled ON and string markers

Page 53

will be asynchronously added into the data file stream with individual time stamps.
For example, the following set of instructions:

dataFile_asynchStringData YES
dataFile_InsertString "CAT_A (asynchronous)"
dataFile_InsertString "CAT_B (asynchronous)"
dataFile_asynchStringData NO
dataFile_InsertString "DOG (synchronous)"

produce the following data file lines:

10 8.8630 33.3186 0.6464 0.4391 -1 0.1048 0.5589 0 0.5330 265
10 8.8963 33.3219 0.6464 0.4391 -1 0.1048 0.5589 4 0.5330 266
12 8.946231 CAT_A (asynchronous)
12 8.946242 CAT_B (asynchronous)
10 8.9296 33.3189 0.5263 0.4864 -1 0.0829 0.4728 0 0.0831 267 DOG (synchronous)
10 8.9630 33.3235 0.5263 0.4864 -1 0.0829 0.4728 4 0.0831 268

10.3.4 Data Record Tags.
The “tag” value that begins each line in the first column indicates the type of information in

that line, i.e., in that data record. There are seven record types, as follows:
Tag #10: EyeData containing a variable number of columns depending on the options

selected for data collection. Table 3
Tag # 2: ASCII Character Marker. If menu item File > Data > Asynchronous Marker Data

is checked ON, then single ASCII character event markers will be inserted asynchronously into the
data file. Certain ASCII characters are automatically entered into the data stream to indicate a
particular event has occurred. The type-2 record contains three entries, as described in Table 4

Tag # 12: An ASCII character string asynchronously inserted during certain events. For
example, by the CLP in response to certain commands.
 E.g. “pictureList_ShowNext.”, “dataFile_InsertString picture of a cat” from a
settings file, or an external program link (serialPort or Ethernet packet). Table 7:

Tag # 3: An ASCII character string generated by ViewPoint to provide general information,
such as when the data file was created. Refer to Table 6

Tag # 5: An ASCII character string generated by ViewPoint to provide column heading
information. Refer to Table 8.

Tag # 6: A 3 character data column identifier generated by ViewPoint. Refer to Table 8.
Tag # 14: Asynchronously inserted head tracker data.

Note: The user can insert uniquely tagged data from their own sources into a
ViewPoint data file using the CLP command DataFile_InsertUserTag. The insertion is
done asynchronously with respect to the eye movement data records and the insertions
are uniquely time stamped.

Page 54

Table 3: DataFile: EyeData Record Structure, Tag = 10
Column
Heading

Type Description

Tag integer The value 10 in the first column indicates an eye data record.

TotalTime float TotalTime = time elapsed in seconds

DeltaTime float dt = delta time in milliseconds since the previous data entry

X_Gaze float X = direction of gaze normalized with respect to the x-axis

Y_Gaze float Y = direction of gaze normalized with respect to the y-axis

Region list Which ROI or ROIs the gaze point is in

PupilWidth float Pupil width normalized with respect to the EyeCamera window width

PupilAspect float Dimensionless aspect ration of the pupil, i.e. 1.0 is a perfect circle

Quality integer Quality of eye movement data. See section 10.7, for a complete
description of the codes.

Fixation float Fixation duration in seconds. A zero value indicates a saccade.

Torsion float Torsion in degrees. -998 indicates Torsion not being calculated. -999
indicates “Range Error”. Only displayed if torsion is being measured.

Count integer Eye movement data record count, useful for sorting.

Mark char Any ASCII character, e.g., {a-z, A-Z,0-9,=,#,+,%, etc.}. See Table 4:,
below.

Page 55

Table 4: Asynchronous Marker Record Structure, Tag = 2
Column # Type Value

1 integer 2 = integer indicates data structure type 2

2 float Time Stamp

3 character Any ASCII character, e.g., {a-z, A-Z,0-9,=,#,+,%, etc.}
Automatically inserted tags include: + Start or resume data
collection, and = Pause data collection

Table 5: Asynchronous HeadTracker Data Record Structure, Tag = 14
Column # Type Value

1 integer 14 = integer indicates data structure type 14

2 float Time Stamp

3 float Head position and angle data. With head tracker option only.
HPX, HPY, HPZ, HAX, HAY, HAZ

Table 6: String Data Record Structure, Tag = 3
Column # Type Value

1 integer 3 = integer indicates data structure type 3

2 string File header informatioin, an ASCII character string generated
by ViewPoint

Table 7: String Data Record Structure, Tag = 12
Column # Type Value

1 integer 12 = integer indicates data structure type 12

2 float Time stamp

3 string ASCII character string from “dataFile_InsertString”, etc.

Table 8: Column Header Data Record Structure (Tag # 5 and 6)
Column # Type Value

1 Integer 5 6 Eye

2 – n String Total Time
Delta Time

X-Gaze
Y-Gaze

ROI

ATT
ADT
ALX
ALY
ARI

10.

Stim
in th
the c
right

Eye_A

Pupil Width
Pupil Aspect

Quality
Fixation

Total Time
Delta Time

X-Gaze
Y-Gaze

APW
APA
AQU
AFX
BTT
BDT
BLX
BLY

4

u
e
e
 h

Eye_B
Page 56

ROI
Pupil Width
Pupil Aspect

Quality
Fixation

HPX
HPY
HPZ
HAY
HAX
HAZ

Record Count
Marker

BRI
BPW
BPA
BQU
BFX

X
Y
Z

Yaw
pitch
roll

CNT
MRK

 Direction-of-gaze Coordinates
The values X and Y are the coordinates of the direction-of-gaze with respect to the
lus window coordinate systems. For example, 0.0, 0.0 will mean that the position of gaze is

 top left hand corner of the Stimulus window; 0.5, 0.5 will mean that the position of gaze is in
nter of the Stimulus window; and 1.0, 1.0 means that the position of gaze is in the bottom
and corner.
It is possible to display the eye-traces in the GazeSpace window as averaged position that

Head Tracker Option
only

Page 57

is with data smoothing. Refer to 8.6 Data Smoothing. By default, the smoothing of the data in the
GazeSpace window display does not influence the XY data values that are stored in the data file
(but the ROI box numbers are triggered by the smoothed eye traces). However, the user can
choose to store the trailing average smoothed data in the data file using menu item File > Data >
Store Smoothed Data.

The calculated (x, y) gaze location is initially in the same space as the calibration point
locations. The calculated gaze is then normalized with respect to the x-axis and y-axis respectively.
ViewPoint allows the GazePoint to be extrapolated outside of the calibration window. This is
particularly important for using the CursorControl Feature. (see 6.9 Cursor Control Feature)

10.5 Timing Measurement
The ViewPoint EyeTracker® includes high precision timing (HPT) with resolution in the

order of 0.0000025, i.e., 2.5E-6 or 2.5 microseconds. The HPT is available to integrators via the
SDK function call: VPX_GetPrecisionDeltaTime Refer to 13.6 for details.

Total Time is the elapsed time in seconds starting with the first record of data collection. By
default Menu item File > Data > Start Data File at Zero is checked (ON) which causes the first
record of the data file to start at time zero. If this menu item is unchecked (OFF), the data records
will start at the current High Precision Time maintained in the DLL and sharable between
applications using the ViewPoint SDK via that DLL.

The value Delta Time is the number of milliseconds since the previous data stream entry.
This represents the time that the software has finished processing each frame and the eye
movement data is available.

10.6 Region of Interest (ROI)
Often one is only interested in whether the direction-of-gaze is at a specific location, or more

generally, which of several possible locations towards which the gaze is directed. Regions of
Interest may be defined as described in 8.5. When the calculated (possibly smoothed) gaze
position is within one of these boxes, the region number is stored in the data file. The ROIs may
overlap and so the gaze can be in more than one region at a time.

-1 indicates that the position of gaze (POG) is not in any of the regions,
n indicates that the POG is in region n,
n,m indicates that the POG is in more than one, overlapping ROI.

10.7 Quality Marker Codes
ViewPoint provides a data quality code for each source of recorded data. The Quality

column contains an integer code ranging from 0, which is the best possible case, to 5. The
hierarchical code structure allows the user to make their own assessment of whether the data is

Page 58

valid or not for their purposes. Quality marker codes are listed below:

Table 9: Quality Codes
Code Description

0 The user has selected to use the glint-pupil vector method and both features are successfully
located.

1 The user has selected to use the pupil only method and the pupil was successfully located

2 The user has selected to use the glint-pupil vector method but the glint was not successfully located.
Defaults to pupil only method for data recorded.

3 In either the pupil only or glint-pupil vector method, the pupil exceeded criteria limits set.

4 In either the pupil only or glint-pupil vector method, the pupil could not be fit with an ellipse.

5 In either the pupil only or glint-pupil vector method, the pupil scan threshold failed.

10.8 Pupil Diameter
An oval is fit to the located pupil. Pupil oval width and height is in pixels. Obviously the actual

pupil diameter will depend on the camera placement relative to the eye. Table 10 Artificial Pupil
Diameters contains a set of black disks of specific diameters that can be used as “artificial pupils”
for determining what actual pupil diameter (in inches or millimeters) the diameter in pixels
corresponds to. Pupil diameters usually range between 2mm and 8mm.

Figure 16: Artificial Pupil Diameters

Page 59

10.9 Pupil Aspect
Blinks can be detected by monitoring the pupil aspect ratio. This is a dimensionless value,

where 1.0 indicates a perfect circle.

10.10 Display Screen Geometry
The data file also contains header information that specifies the results of the GeometryGrid

calculations for screen size and viewing distance. The screen size values saved will be the values
calculated for the entire screen width and height, not the measured lengths of the lines (that are
20% less) entered by the operator.

Chapter 11 Data Analysis

11.1 Real-Time
The ViewPoint EyeTracker ® provides many means of monitoring eye movements in real-

time including the PenPlot, GazeSpace and Status windows.

Figure 17: Status and GazeSpace Windows

Figure 18: PenPlot Window

Time in seconds
inserted dataMar
point that they w

B = Blink
F = Fixation
S = Saccade.
D = Drift
Use the Status window for real-time
monitoring of eye movement data and
ViewPoint activities.
The GazeSpace window
displays eye movements in real-
time over the stimulus.
The inclusion of a particular PenPlot may be toggled via the menu
items at: Menu: PenPlots > * . They may also be specified in CLP
instructions.
Zoom a particular PenPlot by clicking the right mouse button in the PenPlot graph well.
Also adjustable via CLP command penPlot_Range, see: 14.11.5.
Page 60

 with tick marks plus any
ker characters at the time
ere inserted.

For additional PenPlot control,
refer to Section 14.11

Page 61

11.1.1 Data Smoothing
Data displayed in the PenPlot and GazeSpace windows may be smoothed. The user can

select the amount of smoothing using the slider on the Controls window DataCriteria tab or with
CLP commands. Two smoothing algorithms can be used, in each case the number of pointsBack
equals the number set by the user:

Simple Moving Average (SMA).
The SMA method uniformly averages N pointsBack, i.e., all points having equal weight.
SMA(t) = [x(t) + x(t-1) + ... + x(t-n)] / N ; where n = (N-1)

Exponential Moving Average (EMA).
The EdMA method uses the following algorithm:
EMA(t) = (currentValue - EMA(t-1)) * K + EMA(t-1) ; where K = 2 / (pointsBack + 1).

NOTES:
SMA is the default setting.
The data is stored UNSMOOTHED unless specified by the user.

The successfully set method is currently reported in the Event History window and the
Status Window.

11.2 Fixation, Saccade, Drift and Blinks
11.2.1 Velocity Threshold

The Saccade Velocity slider on the Controls window DataCriteria tab provides a
qualitative means for discriminating saccades from fixations with noise. Adjustments to this
threshold should be done while examining the Total Velocity in the PenPlot window. You can
see when the subject is fixating and when they saccade from the spikes in this trace. The value of
the spikes is simply the change in 2D position without begin divided by sampling interval time.

Looking at the Penplot when the subject is fixating you can see that the Velocity trace
contains noise. (thermal, video noise etc.) If saccades are large, then the placement of the
saccade threshold is not so critical. If saccades are small more care should be taken. There is a
trade-off in terms of misclassifying noise as a saccade or a small saccade being below threshold
are missed.

11.2.2 Fixations
ViewPoint calculates fixation as the length of time that the velocity was below the saccade

velocity criterion. Fixation duration is included in the data file as a cumulative value, is displayed
as a value in seconds in the Status window, as a ramp function in the Fixation Time pen plot, and
the fixation start time is indicated in Events plot by the letter ’F’. At the request of several
customers, we have included the fixation duration value into the data file (in the AFX column). This

Page 62

are the same value as appear in the Status window and is plotted in the PenPlot window in real-
time, based on a trailing average smoothing algorithm and the qualitative saccade velocity
threshold adjusted by the user (possibly during data collection). It may be preferable to apply a
symmetrical smoothing kernel to the un-smoothed data during post-hoc data analysis and to
determine the optimal saccade criteria at that time.

The velocity value is simply the difference between the current and the last calculated and
smoothed gaze points, i.e., the change in the normalized position of gaze, – hence smoothing will
affect the velocity magnitude.

11.2.3 Drift
 Note that the eye may be slowly drifting or in a low velocity smooth persuit, such that the

velocity is below the Saccade Velocity criterion. For this reason we also provide a Drift criterion
that establishes the maximum distance that the gaze point may move away from the putative
fixation point. That is, we impose the additional criterion that the position of gaze must remain
within a certain distance of the initial fixation point (or the previous drift point). Fixation drift is in
normalized screen coordinates as the calculated position of gaze.

GUI: Controls window : DataCriteria tab : Drift Allowed slider
CLP: driftCriterion normalValue

The absolute drift distance and the specified Drift criterion level can be visualized in the Drift
penPlot well as the letter ‘D’.

GUI: menu Windows > PenPlots > Drift
CLP: penPlot +DRIFT

11.2.4 Blinks

As the eye lid comes down during a blink, the elliptical fit to the pupil becomes increasingly
flat before it disappears. This characteristic change in the aspect ratio of elliptical fit to the pupil
can be used to detect blinks. A blink is classified as the pupil aspect ratio crossing below the
threshold.

11.2.5 Events
Fixation, Saccade, Drift and Blink events are displayed in the Events penplot graphics well

as the following characters:
F – fixation
B – blink
S – saccade
D – drift

Page 63

11.2.6 SDK

The real time values for all data points are available via the DLL based SDK. See section
15.8.

11.3 Post-Hoc
The data file format is described in Chapter 10.
We also provide a basic data analysis program that allows displaying data in both a time plot

and a 2D (x,y) plane overlayed on the visual stimulus. The DataAnalysis program can be launched
by itself from the folder or it can be launched when the data file is closed.

Menu: File > Data > Close & Analyze Data File

 CLP: dataFile_CloseAndAnalyze

Page 64

Chapter 12 Using Settings Files
All the graphical user interface (GUI) controls in the ViewPoint application have equivalent

command line interface (CLI) strings that are interpreted by the command line parser (CLP). All of
the GUI values and selections (menu selections, slider values, etc.) can be saved in a Settings file
that can be later read back into the CLP next time the program is run, so the user can start working
without resetting everything by hand. The Settings file also contains calibration values, region of
interest (ROI) specifications and other program variables. By default, ViewPoint assumes that the
Settings files are stored in the folder named “Settings” that is located in same folder as the
ViewPoint application program.

The Settings files are in (usually tab delimited) ASCII format. Settings files can be saved
and loaded using menu selections, as described in 10.1 Saving and Loading Settings Files.

The Settings file consists of individual lines of ASCII text that may be edited using an editor.
The document must however (a) be saved as text only (b) have each command separated by a
semi colon, and (c) conform accurately to spelling and spacing requirements. The CLP is not case-
sensitive. An editor with good tab setting capabilities is recommended because the row entries are
tab separated. The default settings file extension is .txt which helps exclude unusable files that
contain extra formatting, such as rich text format (.rtf) and MS Word format files. Use menu item
File > Settings > Edit Settings to select an existing settings file to edit.

Do not modify anything that you do not understand.

Important Notice: these commands (names and argument lists) may not be consistent
with the Macintosh ViewPoint settings, and they are subject to changes in future versions.
Note: The strings are not case sensitive.

Settings Files may be nested (i.e. one Settings file may call another Settings file, see:
settingsFile_Load). Consequently, it is desirable for each file to be reasonable in length.
Currently the Settings file is limited to 800 lines, including comment lines. Note however that the
same settings file cannot be called recursively. Example settings files are contained in the
Settings folder on the ViewPoint EyeTracker® disk supplied with your system.

12.1 CLP String Parsing
All white spaces are gobbled up until the beginning of a string is specified by either (i) a non-

white space character, or (ii) a beginning quote is encountered. Quotes should be matched (this
was not expected in previous versions). An inline double-forward-slash will cause everything
remaining on the line to be ignored as a comment.

12.2 Saving and Loading Settings Files
File > Settings > Load Settings

allows the user to read in the settings, using the standard open file dialog box.

Page 65

File > Settings > Save Settings…
allows the user to store the current Settings to file, using the standard open file dialog box.

File > Settings > Verbose Loading
causes additional information from the CLP to be displayed in the Event History window.

File > Settings > Save Window Layout
saves the size, location and z-ordering of all ViewPoint windows.

12.3 Pre-load Settings in a Startup file
When ViewPoint EyeTracker® is launched it loads in the content of the file startup.txt

that is located in the folder named “Settings”. This can be used to load regularly used settings to
reduce setup time.

12.4 Settings/LastRun.txt
ViewPoint automatically creates the settings file Settings/LastRun.txt upon quitting.

The user may reload these manually at any time, or the user may edit the
"Settings/Startup.txt" file to include the following command that will automatically load the
previous settings whenever ViewPoint is restarted: settingsFile_Load LastRun.txt

12.5 Settings File Lists
A simple sequential state-logic is provide by allowing the user to specify a list of settings files

and allowing a variable time delay before loading the next file in the sequence. The Settings File
List to be sequenced through may be set up using a group of CLP command (settingsFileList_Init
, etc.) described in section SettingsFileList commands 14.16. Start and control the sequencing via
the menu item File > Settings File > SettingsFileList. Hint: It is useful to assign FKey commands
for these.

12.6 SettingsFile Examples
It is often a good idea to create individual settings files for different groups of related

commands, and then call that settingsFile from a main settingsFile.
Example 1: create individual settingsFiles that contain the name of a bitmap image and the

ROIs for that image.

File: imageAndRoi_1.txt

stimulus_LoadImageFile picture1.bmp
setROI_RealRect 1 0.1 0.1 0.3 0.2
setROI_RealRect 2 0.4 0.4 0.5 0.5

Page 66

 File: imageAndRoi_2.txt

stimulus_LoadImageFile picture2.bmp
setROI_RealRect 1 0.6 0.1 0.9 0.2
setROI_RealRect 2 0.4 0.7 0.5 0.9

File: startup.txt

settingsFile_Load imageAndRoi_1.txt

Example 2: create individual settingsFiles that set the FKEY commands for a particular task

File: fkeysForCalibration.txt

fkey_cmd 9 calibration_selectPrevious
fkey_cmd 10 calibration_snap
fkey_cmd 11 calibration_selectNext

12.7 CLP Commands
The same Command Line Parser (CLP) is used for command strings received from:

Settings files that are loaded.
The SDK using the VPX_SendCommand function (including RemoteLink)
Serial port packets of type COMMAND_LINE.

The total command line length should not exceed 255 characters. See Chapter Chapter 12
for details about using CLP commands.

12.8 Associating CLP Commands with FKeys
CLP commands can be associated with FKeys. These associations can be viewed in the Info

panel: menu Help > Info > ShortCuts tab. Refer to 14.23.1

Page 67

Chapter 13 Serial Port Communication

The ViewPoint EyeTracker® provides real-time communication with other computers via a
serial interface. This data includes (x, y) position, region of interest (ROI) box numbers, pupil size,
and timing data, calibration point locations and events, window discriminator box location changes,
etc., as described in Chapter 9

13.1 Getting Started

Make sure that you are using a cable that is designed to connect two computers together
(cross-over cable), rather than a computer and an external device. This is a cable that switches the
send and receive wires so that the send from one computer goes to the receive of the other
computer. (not straight through)

You may want to write your own interface program that uses the serial information, but to get
started, you can test serial data transfer by using a copy of the RemoteLink ™ program on the
receiving computer. Select menu item Interface > and ensure that the correct port (the one your
serial cable is plugged into) is selected and the baud rate matches that selected on the interfacing
application. Data bits "8", parity "None" and Stop Bits "1" are a standard configuration and should
be changed only if required to match those of the interfacing application. We recommend trying
flow control with DTR/DSR enabled. XON/XOFF should always be disabled.

ViewPoint does not by default, monopolize the serial port, so it is necessary to connect to the
serial port by selecting menu item Interface > Serial Port > Connection Settings. After you have
finished with it you should disconnect so that other applications can use the serial port. If the
selected port is in use by another device, an error box will be displayed.

13.2 Sending Real and Test Data
To transfer real-time eye data, select Interface > Serial Port > Send Streaming Data.
The menu item Interface > Serial Port > Send Test Pattern will send artificial position-of-

gaze information, and other information, that forms a geometric pattern, which can help in testing
and demonstrating the serial communication feature.

Menu Item Interface > Serial Port > Send Events Only if toggled ON will send serial port
data only when there is a significant event. Significant events are specified as:

a saccade or fixation
an entry or exit from any of the first 10 ROI.

1. drift
To view the events as they occur in real-time, enable Seconds in the penPlot window.
Use the CLP command EventFilterOptions to control what constitutes an event.

Page 68

 eventFilterOptions +saccade +roi -drift
Menu Item Interface > Serial Port > Send Single Packet if toggled ON will send a single

packet of serial data.

Note: These can be controlled from the remote computer if eye data is only needed
occasionally.

13.3 Transfer to Intel and Macintosh Machines
ViewPoint uses Big Endian data storage (also called Network-Endian because it is the

standard for the internet). A Big Endian machine stores the hexadecimal value 0x1234 as (0x12
0x34), while a Little Endian machine stores the same value as (0x34 0x12).

 You are all set if you are receiving the data packets on an Apple™ Macintosh™ computer, ,
because Big Endian is the native data storage format for this host. This is true for both the
traditional Motorola™ and the newer IBM™ processor machines.

If you are receiving the data packets on a Windows™ PC using an Intel™ processor, then
you will need to swap the two bytes composing the unsigned short integers (UINT16), because
Intel machines use Little Endian data storage.

13.4 Connections
Newer computers do not have external serial ports, but instead have USB ports and FireWire

ports. Serial data can nevertheless still be sent by using a 3rd party USB-to-Serial adapter or by
using an add-on PCI card with a serial port.

13.5 Serial Protocol
It is necessary to match the serial port settings of the received program to those of the

sender program.

Table 10: ViewPoint Default Serial Port Settings
Setting Value

Baud rate 56K (57,600)

Data bits 8

Parity bits 0 (no parity)

Stop bits 1 (one stop bit)

Page 69

13.6 Serial Packet Header Structure
Note carefully that ViewPoint uses a packet scheme to transfer data. This means that the

bytes are not ascii data and should not be displayed using a terminal emulator program.
The serial information is sent in bytes without any intrinsic word alignment. A delayed,

dropped or corrupted byte can cause misalignment of multi-byte information, such as integers.
Consequently, it is desirable to verify that a byte sequence starts with a valid Packet Header before
reading in what is assumed to be data. The Packet Header consists of four bytes as follows:

Table 11: Serial Packet Header Contents
Setting Type Value

1 byte Synchronization Byte-1, corresponds to ascii char ‘V’, decimal 86 (hex 0x56)

2 byte Synchronization Byte-2, corresponds to ascii char ‘P’, decimal 80 (hex 0x50)

3 byte SerialTag Byte, numerical value indicates the type of packet that follows.

4 byte PacketSize Byte, numerical value is the number of bytes in the packet body.

The receiver program should verify that the first byte is the character ‘V’ and that the second
byte is the character ‘P’, indicating that the data is from the ViewPoint program.

Page 70

13.7 Serial Packet Data Structures
There are several types of packets that contain different types of information.

Table 12: Packet Types
Direction Packet Data Structure,

Header SerialTag Name
Header
SerialTag
Value

Information Description

OUT Calibration_PacketType
CALIBRATION_SerialTag

4 Info. For remote presentation of
calibration points. Generated by:
*Various stages of calibration.

OUT EyeData_PacketType
EYEDATA_29_SerialTag

10 Eye data

IN ASCII string data
COMMAND_ SerialTag

11 An ASCII string that is sent to the
Settings Command Line Parser

IN ASCII string data
DATAFILE_INSERT_ SerialTag

12 Immediately inserts the packet
string into the data

IN / OUT Variable length timeStamp data
PING_SerialTag

13 IN: immediately returns identical
copy of the timeStamp data
packet in a PONG packet.
Generated during the serial send
test pattern.

IN / OUT Variable length timeStamp data
PONG_PacketType

14 IN: reports the round trip time in
EventHistory. Generated in
response to a PING packet with
an exact copy of the timeStamp
data.

OUT Quality code
REJECT_PacketType

16 Bad data

IN Packet Types are received by ViewPoint
OUT Packet Types are generated by ViewPoint

Page 71

13.8 Data Value Encoding
All spatial location values, for example, position of gaze, calibration point locations, etc., are

normalized and multiplied by 10,000 before being sent as a two byte integer (i.e., an unsigned
short) that we will denote as UINT16. Thus all locations are stored in a TenKCode with range of 0
to 10,000. The following constants will help :
#define Normalized_to_TenKCode 10000.0
#define TenKCode_to_Normalized (1.0 / Normalized2TenKCode)

For example, the position of gaze data is converted to TenKCode format like this:

EyeData_PacketType dat ;
dat.gx = (UINT16)(normalXpos.x * Normalized_to_TenKCode);
dat.gy = (UINT16)(normalXpos.y * Normalized_to_TenKCode);
…

To reclaim the normalized floating point location value, simply divide the floating point value
by 10000.0 :

if (MotorolaMachine) {
 normalxpos.x = dat.gx * TenKCode_to_Normalized;

normalypos.y = dat.gy * TenKCode_to_Normalized;
}
elseif (IntelMachine) {
 normalxpos.x = BigToLittleEndian (dat.gx) * TenKCode_to_Normalized;

normalypos.y = BigToLittleEndian (dat.gy) * TenKCode_to_Normalized;
}

Finally, to display the position in a window, multiply the normalized values by the window
width and height and cast to integers :
POINT windowXpos;
windowXpos.x = (int)(normalXpos.x * windowWidth);
windowXpos.y = (int)(normalXpos.y * windowHeight);

Page 72

13.9 Packet Data Structures
typedef enum
{

HEAD_CalEpoch, // Never sent
 START_CalEpoch, // open full screen calibration window
 SHOW_CalEpoch, // show calibration stimulus point
 CLICK_CalEpoch, // show that point is registered, e.g. change color
 HIDE_CalEpoch, // hide calibration point
 STOP_CalEpoch, // close full screen calibration window
 TAIL_CalEpoch // Never sent
} CalibrationEpochType ;

typedef struct // CALIBRATION_SerialTag == 4
{

UINT16 epochCode; // type cast with (CalibrationEpochType)
 UINT16 pointIndex; // calibration point index
 UINT16 cx; // X location of calibration point sent as TenKCode
 UINT16 cy; // Y location of calibration point sent as TenKCode
} Calibration_PacketType;

typedef struct // EYEDATA_29_SerialTag == 10
{

UINT16 gx; // X position sent as TenKCode
 UINT16 gy; // Y position sent as TenKCode
 UINT16 dt; // delta time in milliseconds since last eye data packet
 UINT16 bx; // window discriminator box code
 UINT16 px; // pupil width (normalized wrt EyeCamera window) sent as TenKCode
 UINT16 py; // pupil height(normalized wrt EyeCamera window) sent as TenKCode
 UINT16 ct; // cyclotorsion in minutes (degrees * 60)
 UINT16 ik; // index of eye data packet
} EyeData_PacketType;

13.10 Example Serial Port Code
#define DataFile_InsertMarker_SerialTag 2
#define EventHistoryString_SerialTag 3
#define CommandLine_SerialTag 11
#define DataFile_InsertString_SerialTag 12

/*---
/ serialSend_Command
/--*/
void serialSend_CommandLine (CSTR cstr)
{

if (haveSerialPort)
 serialOutputDataBytes(CommandLine_SerialTag, cstr, strlen(cstr));
}

/*---
/ serialSend_DataFile_InsertString
/--*/
void serialSend_DataFile_Insert (CSTR cstr)
{

if (haveSerialPort)
 serialOutputDataBytes(DataFile_InsertString_SerialTag, cstr, strlen(cstr));
}

Page 73

/*---
/ serialOutputDataBytes
/--*/

#define MaxPacketBytes 256
#define HeaderBytes 4
#define MaxBodyBytes MaxPacketBytes – MaxHeaderBytes

void serialOutputDataBytes(SerialCodeType packetType, char data[], int packetBytes)
{

char buffer[MaxPacketBytes] = { 'V', 'P', '0', '0' };
 char *body = buffer + HeaderBytes; // point past the packet header info
 buffer[0] = 'V' ;
 buffer[1] = 'P' ;
 buffer[2] = (char)(packetType);
 buffer[3] = (char)(packetBytes);
 memcpy(body, data, packetBytes);
 write(serialPort, buffer, packetBytes+ MaxHeaderBytes);
 flush(serialPort);
}

/*--
/ SerialSend_DataFile_InsertMarker('K');
/--*/
SerialSend_DataFile_InsertMarker(char theMarkerChar)
{

BYTE buffer [5] ;
 BYTE numberOfBytesInThePacketBody = 1 ;
 // Construct PACKET HEADER
 buffer[0] = (BYTE)('V') ; // the ascii capital character V
 buffer[1] = (BYTE)('P') ; // the ascii capital character P
 buffer[2] = DataFile_InsertMarker_SerialTag ; // =2
 buffer[3] = numberOfBytesInThePacketBody ;
 // Construct PACKET BODY
 buffer[4] = (BYTE)(theMarkerChar) ;
 // Send packet.
 write(serialPort, &buffer, sizeof(buffer));
 flush(serialPort);
}

serialSend_CommandLine ("velocityThreshold 0.8");
serialSend_CommandLine ("dataFile_NewUnique");
serialSend_DataFile_InsertString ("This is an insert string from remote computer ");
serialSend_DataFile_InsertString ("Remote tab data:\t0.0\t9.1\t8.2\t7.3");
serialSend_CommandLine ("dataFile_Pause")

Hints:
Interfaces from some programs seem to require adding extra white spaces at the
end of strings. Also make sure that the strings are zero terminated, rather than
newline terminated. You can check the contents of incoming packets by
selecting:

GUI menu item: Interface > Serial Port > Verbose Receive
CLP command: verbose +serialReceive // +serialSend

Page 74

Chapter 14 ViewPoint Interface: GUI,
SDK, CLP

14.1 General
This Chapter provides a description of each GUI controls and the equivalent CLP

commands and SDK functions.
There are several ways to interact with the ViewPoint EyeTracker®. The most apparent way

is by using the graphical user interface (GUI) that consists of menu items, sliders, buttons, etc.
Each of the GUI controls has a corresponding command line parser (CLP) string. The GUI control
values can be saved in a Settings file that consists of the CLP strings (keyTerms and parameters),
so control values can be easily loaded at any time. The CLP strings can also be sent from other
programs, either on the same machine, or from another computer. The software developer’s kit
(SDK) includes a routine that allows other programs to send the CLP strings as well as providing
access to data and other information.

14.1.1 VPX_SendCommand(“setSomething”) replaces VPX_SetSomething
Previous versions of ViewPoint provided individual SDK functions to set contols (VPX_Set*

commands), such that there were equivalent GUI, SDK, and CLP instructions. With the introduction
of the SDK function VPX_SendCommand(string), the need for equivalent SDK functions was
largely obviated. In general, no new SDK VPX_Set* functions are being added and the old ones
are considered an unnecessary duplication and are therefore being deprecated. Future versions
of ViewPoint may not support the VPX_Set* functions if there is an equivalent CLP
command string that can be sent. The deprecated SDK functions are printed in light gray.

14.1.2 VPX_SendCommand & formatted strings
The VPX_SendCommand function includes a va_list mechanism to handle formatted text.

This means that it accept both simple string arguments and also strings with formatting instructions
followed by additional arguments, just like the C language printf and scanf functions. This is
extremely convenient for C programming, however, some third party applications (such as Matlab)
do not provide an interface that handles va_lists. To accommodate these we include the
VPX_SendCommandString function that takes only simple string arguments.
With formatted strings we can simply write:

VPX_SendCommand(“stimulus_BackgroundColor %d %d %d”, r, g, b); // formatted

Without formatted strings we must write:

char str[255];
 sprintf(str, “stimulus_BackgroundColor %d %d %d”, r, g, b);
 VPX_SendCommandString(str); // formatted

Page 75

The programmer should use a precompiler conditional found inside the header file VPX.h.

#ifdef _IMPORTING_INTO_MATLAB
 #define VPX_SendCommand VPX_SendCommandString
#else
 VPX_DECLSPEC int VPX_SendCommand(TCHAR * szFormat, ...);
#endif

14.1.3 Quoting strings with white spaces
File names that contain spaces (e.g.: “My New File .txt”) must be put inside double quotes.

In a settings file this is very straight forward and readable:
dataFile_NewName “ C:\VP\Data Files\Exp 6\subj 2.wks\”

However when specified withing a formatted string, the programmer must remember to
escape the quote characters inside the command string, that is, preceed the quote character with a
back slash (e.g.: \”), as seen here:

VPX_SendCommand(“dataFile_NewName \”%s\” “, dataFileName);
 VPX_SendCommand(“dataFile_InsertString \“ Showing picture of a cat. \” “);

File names cannot begin with a white space. All white spaces are gobbled up until either the
beginning of a string is specified by either a non-white space character, or a beginning quote is
encountered.

14.1.4 Case insensitive CLP strings
The CLP command strings are generally presented starting with lower case and then

capitalizing the first letter of successive words, however the parser does not care about the case of
the command strings, so you do not need to worry about this as a source of error.

14.1.5 Boolean Toggle
As of version 2.8.2 all CLP commands that accept BoolValue arguments (e.g.: True, False,

On, Off) can now also accept the argument “Toggle”, e.g., “dataFile_Pause Toggle”, that changes
from the current state to the opposite state.

14.1.6 SDK return values
All SDK functions return the integer value 1 unless otherwise specified. Check the SDK

header file, VPX.h, for final authority; changes may appear there before the documentation can be
updated.

Page 76

14.2 Data Files

14.2.1 Open Data File with Randomly Generated Name
GUI: File > Data > Unique Data File ^U

CLP Command: dataFile_NewUnique

SDK Function: VPX_DataFile_NewUnique();

Opens a new data file with a unique new name without going through the “Save As” window. The
data line in the Status window shows the data file name (default is a random number).

By default data files are stored in the “Data” folder that is located in same folder as the ViewPoint
application program. However this default can be overridden with the setPath command.

See also:
setPath
dataFile_NewUniqueExtension

See 10.3 Data File Format for a description of the format of the data file.
VPX_SendCommand(“dataFile_NewUnique”);
VPX_DataFile_NewUnique();

14.2.2 Specify NewUnique Data File Extension
GUI: -none

CLP Command: dataFile_NewUniqueExtension fileExtensionString

SDK Function: -none-

Default: .txt

Specifies the file type extension that is appended when performing the dataFile_NewUnique
operation. This specification does not affect the format of the data inside the file. This
specification does not affect the dataFile_NewName command.

A dot should be included for this to correctly specify a file type, e.g. “.wks”, “.txt”, “.doc”. The file
extension “.wks”, will usually cause the data file to be opened directly by Microsoft Excel or
Microsoft Works spreadsheet packages.

See section: 14.1.3 Quoting strings with white spaces
HINT: You can use the extension string to append a group name, e.g., “_drug_C_.wks” or

“_MondayData.txt”,
v.2.8.1.12 CLP added.
dataFile_NewUniqueExtension “ drug group X .xls”
VPX_SendCommand(“dataFile_NewUniqueExtension .txt ”);
VPX_SendCommand(“dataFile_NewUniqueExtension \“ patient_%d .txt\” “, pid);

Page 77

14.2.3 Open a Data File and Specify a File Name
GUI: File > Data > New Data File … ^N

CLP Command: dataFile_NewName fileNameString

SDK Function: -none-

Opens a new data file with a specified name. The GUI Menu selection allows the user to specify
the file name through the “New ViewPoint Data File” dialog.

Any file type extension must be included in the string.
The dataFile_NewUniqueExtension specification does not affect this command.
See section: 14.1.3 Quoting strings with white spaces
The Data line in the Status window reports the current state of data recording.
VPX_SendCommand(“dataFile_NewName myData.txt”);
VPX_SendCommand(“dataFile_NewName \“ C:\VP\Data Files\Exp 6\subj 2.wks\” “);
VPX_SendCommand(“dataFile_NewName \”%s\” “, dataFileName);

14.2.4 Insert a String into the Data File
GUI: -none-

CLP Command: dataFile_InsertString string

SDK Function: -none-

Inserts the string into the data file. The string must be inside quotes if it contains white spaces; in C
programs the quote characters inside the command string must be escaped with backslashes.

See section: 14.1.3 Quoting strings with white spaces
The string can either inserted synchronously, i.e., at the end of the next data line (record), or

asynchronously, i.e., on a separate line, depending upon the specification of
dataFile_AsynchStringData

When called more frequently than data is saved, and the dataFile_AsynchStringData is set
to false, then the strings are concatenated. The string separator is the tab character.

See also:
dataFile_InsertMarker
dataFile_AsynchStringData

VPX_SendCommand(“dataFile_InsertString showingPictureOfCat”);
VPX_SendCommand(“dataFile_InsertString \“ Showing picture of a cat. \” “);
VPX_SendCommand(“dataFile_InsertString \”%s\” “, userString);

Page 78

14.2.5 Insert a Marker into the Data File
GUI: -none-

CLP Command: dataFile_InsertMarker DataMarker
 DataMarker: Any single byte ascii character.

SDK Function: VPX_DataFile_InsertMarker (DataMarker);

Insert the specified ASCII character into the data file. This can be used for data synchronization
coding, or patient responses, etc.

The string can either inserted synchronously, i.e., at the end of the next data line (record), or
asynchronously, i.e., on a separate line, depending upon the specification of
dataFile_AsynchMarkerData Yes

Where exaxt timing of the markers is critical, you may achieve better performance using the
specific SDK function directly, rather than sending the CLP command string that must first be
processed by the parser.

Try the program ~/ViewPoint/ExtraApps/DataMarker.exe provides an easy way to manually
insert markers into the data file in real-time.

Note:
Currently, non-printable ascii characters are not filtered out, so be careful if you specify such

characters as: tab, bell, backspace, line-feed, etc.
See also:
dataFile_InsertString
dataFile_AsynchMarkerData

dataFile_InsertMarker K
VPX_SendCommand (“dataFile_InsertMarker K “)
VPX_SendCommand (“dataFile_InsertMarker %c “, theMarker)
VPX_DataFile_InsertMarker(‘K’)

Page 79

14.2.6 Insert a User Defined Data Tag into the Data File
GUI: -none-

CLP Command: dataFile_InsertUserTag UserTag

SDK Function: -none-

This allows users to insert uniquely tagged data from their own sources into a data file. The
insertion is done asynchronously with respect to the eye movement data records and the
insertions are uniquely time stamped.

See: Section 10.3.2on page 52.
See also:
dataFile_InsertString

dataFile_InsertUserTag 800 "MyUserData 1 A 0.888"
VPX_SendCommand("dataFile_InsertUserTag 800 \"MyUserData\t%d\t%d\" ", ix, ix*ix
)

14.2.7 Specifes asynchronous or synchronous string data
GUI: File > Data > Asynchronous String Data

CLP Command: dataFile_AsynchStringData BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Yes

Specifies whether to insert strings data asynchronously or synchronously into the data file.
Synchronously means that this data is appended to the same line as the normal eye tracker data.

This string data will be treated as muli-column data by using tab-characters as column
separators. Synchronous data is usually easier to load into spread sheets or other analysis
packages. If several Strings are inserted between eye tracker samples, the Strings will all be
concatenated. If this control is set to Yes (i.e., Asynchronous), then each String is separately
time stamped and inserted on a data line by itself.

See: Section 10.3.2on page 52.
See also:
dataFile_InsertString

VPX_SendCommand(“datafile_ AsynchStringData No”);

Page 80

14.2.8 Specify asynchronous or synchronous markers data
GUI: File > Data > Asynchronous Marker Data

CLP Command: dataFile_AsynchMarkerData BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default Setting: No

Specifies whether to insert data markers asynchronously or synchronously into the data file.
Synchronously means that this data is on the same line as the normal eye tracker data, in a

separate column, which is usually easier to load into spread sheets or other analysis packages.
If several Markers are inserted between eye tracker samples, the Markers will all be displayed
together and more precise Marker time information is lost. If this control is set to Yes (i.e.,
Asynchronous), then each Marker event is separately time stamped and inserted on a data line
by itself.

See: Section 10.3.2on page 52.
See also:
dataFile_InsertMarker

VPX_SendCommand(“datafile_AsynchMarkerData Yes”);

14.2.9 Specify asynchronous or synchronous head tracker data
GUI: File > Data > Asynchronous Head Tracker Data

CLP Command: dataFile_AsynchHeadData BoolValue
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Yes

Available only with head tracker option
Specifies whether to insert head tracker data asynchronously or synchronously into the data file.
See: Section 10.3.2on page 52.
See also:
headTrackerConnect

VPX_SendCommand(“dataFile_AsynchHeadData yes");

Page 81

14.2.10 Specify data file start time
GUI: File > Data > Start Data File Time at Zero

CLP Command: dataFile_startFileTimeAtZero BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default Setting: Yes

Specifies whether to start each new data file at time=0. Otherwise, the data-file will use the time
from the DLL, so the time values in each sequential data file will be increasing and represent
actual elapsed time. The DLL time starts at zero when the DLL is launced, which is when the first
program that accesses it is launched. Turning this off may be useful to keep track of fatigue
factors or the duration of rest periods. It is may also be useful because other programs that use
the DLL time will have the same time values, which can aid in post-hoc synchronization of
events.

See also:
VPX_GetPrecisionDeltaTime

VPX_SendCommand(“datafile_StartFileTimeAtzero No”);

Page 82

14.2.11 Store smoothed or unsmoothed data
GUI: File > Data > Store Smoothed Data

CLP Command: dataFile_StoreSmoothedData BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: No

Specifies whether to store the trailing average smoothed data using the number of smoothing
points specified by the Smoothing Points Slider on the Controls window. The eye trace lines
displayed in the GazeSpace and Stimulus windows can be smoothed to reduce noise. The
degree of smoothing of gaze calculation may be varied using the slider on the Controls window
(see figure 9). When placed at the far left, no smoothing is performed. Incrementing the slider to
the right increases the number of previous points included in the average calculation. A value of 4
makes attractive and useful real-time graphics. Smoothing effects the real time calculations.
Because smoothing effects the velocity calculations the saccade velocity threshold must be
adjusted proportionately. Smoothing will also affect which ROI boxes are triggered By default,
smoothing does NOT influence the data values that are stored to file, because the real-time
smoothing uses a trailing average technique, whereas post hoc data analysis should use a
symmetrical smoothing technique.

See also:
smoothingPoints, smoothingMethod

VPX_SendCommand(“datafile_StoreSmoothedData Yes”);

14.2.12 Specify whether to use buffering (DEPRECATED)
GUI: -removed-

CLP Command: dataFile_UseBuffering BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_DataFile_Buffering(bool tf);

Default: Yes

DEPRECATED
Allows selection between (Yes) buffer the data in RAM before saving to disk, or (NO) immediately

write to disk each data record. Because previous versions MSWindows were quite unstable,
many users preferred to turn buffering off, so that data was not lost in the event of a system or
program crash; this did however sometimes incur a slower sampling rate. In general this is
neither required nor recommended with most newer operating systems.

VPX_SendCommand(“dataFile_UseBuffering No”);
VPX_DataFile_Buffering(false);

Page 83

14.2.13 Pause writing of data to file
GUI: File > Data > Pause Data Capture (toggle) ^P
CLP Command: dataFile_Pause

dataFile_Resume
No arguments.

SDK Function: VPX_DataFile_Pause(bool tf);

Pauses the writing of data to an open data file. Inserts a “+” marker into the data file when paused
and inserts a “=” marker at time resumed. Because of the MSWindows overhead for opening
and closing files, the user may prefer pausing and resuming to opening and closing. Also, pause
may be set before the file is opened, such that the overhead delays for opening the file are
finished before the start of the experiment. The Data line in the Status window reports the
current state of data recording.

VPX_SendCommand(“dataFile_Pause”);
VPX_SendCommand(“dataFile_Resume”);
VPX_DataFile_Pause(TRUE);

14.2.14 Close Data File
GUI: File > Data > Close Data File ^W

CLP Command: dataFile_Close

SDK Function: VPX_DataFile_Close();

Closes a data file if one is open, regardless of Pause state.
The Data line in the Status window reports the current state of data recording.
See also:
dataFile_CloseAndAnalyze

VPX_SendCommand(“dataFile_Close”);
VPX_DataFile_Close();

Page 84

14.2.15 Close Data File and Open in Post-Hoc Analysis tool
GUI: File > Data > Close & Analyze Data File Alt-Shift-W

CLP Command: dataFile_CloseAndAnalyze

SDK Function: -none-

Closes a data file if one is open, regardless of Pause state, and automatically launches the
ViewPoint DataAnalysis ™ program with the data file loaded in.

The Data line in the Status window reports the current state of data recording.
VPX_SendCommand(“dataFile_CloseAndAnalyze”);
VPX_closeAndAnalyzeDataFile();

14.3 Stimulus Images

14.3.1 Load Stimulus Image into the Stimulus window
GUI: File > Images > Load Image ^I
CLP Command: stimulus_LoadImageFile filename

SDK Function: -none-

Loads the selected image into the Stimulus window
See section: 14.1.3 Quoting strings with white spaces
See also:
stimulusGraphicsOptions +Image

VPX_SendCommand(“stimulus_LoadImageFile catPicture.bmp”);
VPX_SendCommand(“stimulus_LoadImageFile \”second cat picture .bmp\” ”);
VPX_SendCommand(“stimulus_LoadImageFile %s”, bitmapFileName);

Page 85

14.3.2 Specifies how to display the currently loaded stimulus image
GUI Stimuli > Image Shape > shape type

CLP Command: stimulus_ImageShape ShapeType

ShapeType: Actual, Centered, Fit, Isotropic
SDK Function: -none-

Default: Fit

Specifies how the bitmap image is to be displayed in the Stimulus windows.
A = Actual : Displays the in the two windows at actual size.
C = Centered : Displays the image actual size and centered in the windows.
F = Fit : Displays the image stretched un-equally to fit the window.
I = Isotropic: Displays the image stretched equally in all directions, so as to maintain the original

proportions, i.e., the original aspect ratio of the image. This may leave window background
("matting") color between edges of the picture and the edges of the window. The color of this
area can be specified with the command: stimulus_BackgroundColor. Note: the gazeSpace
window may automatically resize to accommodate.

See also:
stimulus_BackgroundColor
VPX_STATUS_StimulusImageShape

VPX_SendCommand(“stimulus_ImageShape Isotropic”);

14.3.3 Specify a background “matting” color for the stimulus window
GUI: Stimuli > Background Color

CLP Command: stimulus_BackgroundColor ColorValue
 ColorValue: Red 0-255, Green 0-255, Blue 0-255

SDK Function: -none-

Added the ability to set the background ("matting") color for use when ImageShape is not set to Fit
and there is space at the sides or at the bottom of the image.

Workarounds: The window may need to be minimized and reopened to show the color changes.
See also:
stimulus_ImageShape

Eg.set to BRIGHT RED use: stimulus_BackgroundColor 255 0 0
VPX_sendCommand (“stimulus_BackgroundColor 255 135 075”);

Page 86

14.3.4 Play specified Sound file
GUI: -none-

CLP Command: stimulus_PlaySoundFile soundFileName

SDK Function: -none-

Plays the specified sound file. May be used as an auditory cue. If the string contains spaces it must
be in quotes. e.g stimulus_PlaySoundFile "Yes.wav".

See section: 14.1.3 Quoting strings with white spaces
This feature may cause a media/audio player to open, if this happens, check your computer

settings.
stimulus_PlaySoundFile ”a very loud meow .wav”
VPX_SendCommand(“stimulus_PlaySoundFile meow.wav”);
VPX_SendCommand(“stimulus_PlaySoundFile \”a very loud meow .wav\” ”);
VPX_SendCommand(“stimulus_PlaySoundFile \”%s\” ”, soundFileName);

14.4 PictureList

14.4.1 Initialize Picture List
GUI: -none-

CLP Command: pictureList_Init

SDK Function: -none-

Initializes the list for stimulus images, making it ready for new names to be entered.
pictureList_Init
VPX_SendCommand(“pictureList_Init”);

14.4.2 Add List of Image Names to PictureList
GUI: -none-

CLP Command: pictureList_AddName imageFileName

SDK Function: -none-

Adds an image file name to the picture list.
pictureList_AddName ”picture of cat .bmp”
VPX_SendCommand (“pictureList_AddName picture2.bmp”);
VPX_SendCommand (“pictureList_AddName \”picture of cat .bmp\” ”);
VPX_SendCommand (“pictureList_AddName \”%s\” ”, imageFileName);

Page 87

14.4.3 Randomize List of Images in the PictureList
GUI: File > Images > Picture List > Randomize PictureList

CLP Command: pictureList_Randomize

SDK Function: -none-

Randomizes the pointers in the picture list. Repeat this to re-randomize.
VPX_SendCommand(“pictureList_Randomize”);

14.4.4 Move to Next Image in the PictureList
GUI: File > Images >PictureList>Next PictureList Image ^F12 (default)

CLP Command: pictureList_ShowNext

SDK Function: -none-

Moves to the next file pointer in the picture list.
VPX_SendCommand (“pictureList_ShowNext”);

14.4.5 Move to Start of Images in Picture List
GUI: File > Images > PictureList > Restart PictureList

CLP Command: pictureList_Restart

SDK Function: -none-

Re-sets the pointer to the first image in the list. Does not un-randomize if the list has been
randomized.

VPX_SendCommand (“pictureList_Restart”);

Page 88

14.5 Controls window: VideoImage

14.5.1 Specify Mapping Feature
GUI: Controls Window, Video Image tab, Mapping feature pull down menu

CLP Command: mappingFeature Method

Methods: Pupil, Glint, Vector, Manual, SlipComp
SDK Function: int VPX_SetFeatureMethod (int featureMethod)

int VPX_SetFeatureMethod2(VPX_EyeType eyn, int featureMethod)

featureMethod :
PUPIL_ONLY_Method, GLINT_ONLY_Method, VECTOR_DIF_Method

Default: Pupil

Controls what type of mapping will be done from EyeSpace to GazeSpace
Return value: 0=false, 1=true, otherwise -1 if invalid value for eye
VPX_SendCommand (“mappingFeature Glint”);
VPX_SendCommand (“mappingFeature Vector”);
VPX_SendCommand (“mappingFeature Pupil”);
VPX_SendCommand (“mappingFeature Manual”);
VPX_SendCommand (“mappingFeature SlipComp”);

14.5.2 AutoThreshold
GUI: Controls window, VideoImage tab, Threshold: Autothreshold button

CLP Command: autoThreshold
autoThreshold_Start

SDK Function: int VPX_AutoThreshold();

int VPX_AutoThreshold2(VPX_EyeType eye);

VPX_EyeType : Eye_A, Eye_B

Automatically sets desirable glint and pupil threshold levels.
VPX_SendCommand (“autoThreshold”);
VPX_AutoThreshold2(EYE_A);

Page 89

14.5.3 Positive Lock Tracking
GUI: Controls Window, Video Image Tab, Threshold Group, Positive-Lock

Threshold-Tracking
CLP Command: positiveLock BoolValue

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle
SDK Function: int set_positiveLockThresholdTracking(int boolValue);

int VPX_SetPositiveLockThresholdTracking2(VPX_EyeType, int tf)

Return value: 0=false, 1=true, otherwise -1 if invalid value for eye
Default: Off

Continuous automatic feature threshold adjustment.
VPX_SendCommand (“positiveLock on”);

14.5.4 Adjust Pupil Threshold Slider
GUI: Controls window, VideoImage tab, Pupil / Threshold slider

CLP Command: pupilThreshold NormalizedValue
pupilThreshold EyeType NormalizedValue
NormalizedValue: a floating point number in range 0.0 to 1.0

EyeType: Eye_A, Eye_B

SDK Function: int VPX_SetPupilThreshold (EyeType normalizedValue)

int VPX_SetPupilThreshold2(VPX_EyeType eyn, float value)

Return value: 0=false, 1=true, otherwise -1 if invalid value for eye
Default: 0.25, but autothreshold at startup may reset this

Sets the image intensity threshold such that the pupil can be segmented from the rest of the image.
The assumption is that the pupil is darker than the rest of the image within the PupilScanArea.
For binocular systems, the user may specify this value separately for eye.

The value zero represents black, the lowest pixel intensity possible, and the value one represents
white, the highest pixel intensity possible.

See also:
autoThreshold

VPX_SendCommand (“pupilThreshold 0.7”);

Page 90

14.5.5 Adjust Glint Threshold Slider
GUI: Controls window, VideoImage tab, Glint / Threshold slider

CLP Command: glintThreshold NormalizedValue
 NormalizedValue: a floating point number in range 0.0 to 1.0

SDK Function: int VPX_SetGlintThreshold (float normalizedValue);

int VPX_SetGlintThreshold2(VPX_EyeType eyn, float value);

Default: 0.88, but autothreshold at startup may reset this

Sets the level pixel intensity used for segmenting the image when searching for the glint (aka,
corneal reflection, corneal reflex, or 1st Purkinje image). All pixels with intensity greater than this
value are candidates for being classified as the glint.

The value zero represents black, the lowest pixel intensity possible, and the value one represents
white, the highest pixel intensity possible.

See also:
autoThreshold

VPX_SendCommand (“glintThreshold 0.6”);

14.5.6 Adjust Video Image Brightness
GUI: Controls window, VideoImage tab, Brightness slider

CLP Command: videoImageBrightness NormalizedValue
NormalizedValue: a floating point number in range 0.0 to 1.0

SDK Function: int VPX_SetImageBrightness (float normalValue)

int VPX_SetImageBrightness2(VPX_EyeType eyn, float normalVal)

normalValue: a floating point number in range 0.0 to 1.0

Default: - varies -

Sets the video image brightness levels normalized from 0.0 to 1.0.
VPX_SendCommand(“videoImageBrightness 0.5”);

Page 91

14.5.7 Adjust Video Image Contrast
GUI: Controls window, VideoImage tab, Contrast slider

CLP Command: videoImageContrast normalValue
normalValue: a floating point number in range 0.0 to 1.0

SDK Function: int VPX_SetImageContrast (float normalValue);

int VPX_SetImageContrast2(VPX_EyeType eyn, float normalVal);

normalValue: a floating point number in range 0.0 to 1.0

Default: - varies -

Sets the video image contrast levels normalized from 0.0 to 1.0.
VPX_SendCommand(“videoImageContrast 0.7”);

14.5.8 Dynamically Optimize Brightness and Contrast Settings
GUI: Controls window, VideoImage tab, AutoImage checkbox

CLP Command: videoAutoImage BoolValue

SDK Function: -none-

Default: Off

Continuously attempts to set the video image brightness and contrast levels to optimal values.
Note 1 : Only the region within the pupil scan area is examined, the pupil scan area rectangle must

be of sufficient size for the algorithm to sample a range of gray levels, otherwise the algorithm will
fail.

Note 2 : The algorithm is under development and may change without notice.
VPX_SendCommand(“videoAutoImage On”);

Page 92

14.5.9 Adjust Pupil Scan Density
GUI: Controls window, VideoImage tab, Pupil / Scan Density slider

CLP Command: pupilScanDensity FloatValue
FloatValue : integer in range 1 to 20

SDK Function: VPX_SetPupilResolution (float resolution);

VPX_SetPupilResolution2 (VPX_EyeType eye, float resolution
);

VPX_EyeType : Eye_A, Eye_B
resolution : use only whole value in range 1 to 20

Default: 7

The value specifies the pixel sampling interval for the threshold segmentation operation. The value
1 indicates to sample every pixel. The value 2 indicates to sample every other pixel in both x and
y directions, so one fourth as many pixels are sampled with a setting of 2 as with a setting of 1.
Etc.

Caution: normally there is no need to sample very densely and doing so will greatly burden the
cpu. For the GUI interface the slider has a default minimal value greater than 1 to avoid cpu
overload. This default minimum may be change with the CLP command:
minimumPupilScanDensity.

Note: previous versions provided for either a normalized floating point value in the range (0.0 –
1.0), or an integer in the range 1 – 20, however the normalized floating point values are no longer
supported. There is no confusion with the value 1, because the minimal sampling interval of
integer 1 and the maximum normalized density (1.0) are opposite ways of looking at the same
thing.

See also:
minimumPupilScanDensity

VPX_SendCommand (“pupilScanDensity 5”);

Page 93

14.5.10 Override Pupil Scan Density Minimum
GUI: -none-

CLP Command: minimumPupilScanDensity DensityIndex
DensityIndex: Integer in range 3 to 20, depending upon max
density chosen.

SDK Function: -none-

Default: 7

Overrides the minimum pupil scan density on the Controls window slider.
Fine sampling is rarely required and not generally recommended.
WARNING: Setting the scan density too fine can create a huge burden on the CPU and

possibley lock-out use of the GUI.
VPX_SendCommand (“minimumPupilScanDensity 12”);

Page 94

14.5.11 Adjust Glint Scan Density
GUI: Controls window, VideoImage tab, Glint / Scan Density slider

CLP Command: glintScanDensity IntValue
IntValue: integer in range 1 to 20

SDK Function: VPX_SetGlintResolution (float resolution);

VPX_SetGlintResolution2 (VPX_EyeType eye, float resolution);

VPX_EyeType : Eye_A, Eye_B
resolution : use only whole value in range 1 to 20

Default: 2 or 3, depending on glintSegmentationMethod

The argument specifies the pixel sampling interval for the glint threshold segmentation operation.
The value 1 indicates to smple every pixel. The value 2 indicates to sample every other pixel in
both the x and y directions, so one fourth as many pixels are sampled as with a setting of 1. Etc.

The glint is usually much smallter than the pupil, so finer sampling is expected.
Caution: normally there is no need to sample very densely and doing so will greatly burden the

cpu. For the GUI interface the slider has a default minimal value greater than 1 to avoid cpu
overload. This default minimum may be change with the CLP command:
minimumGlintScanDensity.

Note: previous versions provided for either a normalized floating point value in the range (0.0 –
1.0), or an integer in the range 1 – 20, however the normalized floating point values are no longer
supported. There is no confusion with the value 1, because the minimal sampling interval of
integer 1 and the maximum normalized density (1.0) are opposite ways of looking at the same
thing.

See also:
minimumGlintScanDensity
glintSegmentationMethod

VPX_SendCommand (“glintScanDensity 5”);

Page 95

14.5.12 Override Glint Scan Density Minimum
GUI: -none-

CLP Command: minimumGlintScanDensity DensityIndex
DensityIndex: Integer in range 7 to 20, depending upon max
density chosen.

SDK Function: -none-

Default: 1 or 3, depending on glintSegmentationMethod

Overrides the minimum glint scan density avaliable on the Controls window slider.
Note: this is not normally required and small scan density values can over burden the cpu.
See also:
glintScanDensity
glintSegmentationMethod

VPX_SendCommand (“minimumGlintScanDensity 3”);

14.6 EyeCamera Window

14.6.1 Adjust Pupil Sacn Area
GUI: EyeCamera window , EyeCamera toolbar , Top Button

CLP Command: pupilScanArea L T R B
L T R B: Normalized floating point values for the corners.

SDK Function: VPX_SetPupilScanArea (VPX_RealRect rr);

Default: 0.200 0.200 0.800 0.800

Defines scan area for the pupil. The four values are the floating point coordinates (0.0 – 1.0) of the
bounding rectangle, listed in the order: Left, Top, Right, Bottom.

VPX_SendCommand (“pupilScanArea 0.3 0.2 1.0 0.4”);

Page 96

14.6.2 Specify Pupil Scan Area Shape
GUI: -none-

CLP Command: pupilScanShape ScanShapeType
ScanShapeType: Rectangle, Ellipse.

SDK Function: -none-

Default: Elliptical

Specifies whether to change the scan area for the pupil to either rectangular or elliptical . Elliptical
scan area is effective at eliminating dark spots that the software interprets as a pupil. Elliptical
Scan

VPX_SendCommand(“pupilScanShape Ellipse”);

14.6.3 Pupil and Glint oval fit constraints
GUI: -none-

CLP Command: pupilConstrained BoolValue
glintConstrained BoolValue

SDK Function: -none-

Controls whether or not the pupil (glint) oval fit is allowed to extend beyond the scan area rectangle
in the EyeSpace window.
VPX_SendCommand(“pupilConstrained True”);

14.6.4 Define Glint Scan Area
GUI: EyeCamera window , EyeCamera toolbar , Third Button to enable

Drag mouse in window to define the glint scan area rectangle.
CLP Command: glintScanSize X Y

SDK Function: VPX_SetGlintScanSize (VPX_RealPoint rp);

Default: 0.400 0.200

Defines scan area for the glint.
The two values are the normalized floating point X,Y size values of the scan rectangle.
VPX_SendCommand (“glintScanSize –0.4 1.3”);

Page 97

14.6.5 Define Offset of Glint Sacn Area Relative to the Pupil
GUI: -none-

CLP Command: glintScanOffset X Y

X Y : Normalized floating point coordinates.
SDK Function: VPX_SetGlintScanOffset (VPX_RealPoint rp);

Default: 0.010 0.080

Defines offset of the glint scan area relative to the center of the pupil.
 The two values are the normalized coordinates of the offset vector from the center of the pupil.
See also:
video_yokedGlint NO

glintScanUnYokedOffset
VPX_SendCommand (“glintScanOffset 0.4 0.3”);

14.6.6 Unyoke Glint Scan Area from the Pupil
GUI: -none-

CLP Command: video_yokedGlint BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Allows the glint scan area to be unyoked from the pupil. i.e. the glint scan area does not move with
the pupil. Special applications only.

See also:
glintScanUnYokedOffset
glintScanOffset

VPX_SendCommand(“video_yokedGlint On”);

Page 98

14.6.7 Define offset of Unyoked Glint Scan Area
GUI: -none-

CLPCommand: glintScanUnYokedOffset X Y

X Y : Normalized floating point coordinates.
SDK Function: VPX_SetGlintScanUnyokedOffset(VPX_RealPoint rp);

Defines offset of the glint scan area relative to the upper left hand corner of the EyeCamera
window.

The two values are the normalized coordinates of the offset vector.
See also:
 video_yokedGlint

VPX_SendCommand (“glintScanUnYokedOffset 0.1 –3.0”);

14.6.8 Toggle Show Treshold Dots On / Off
GUI: Video > Show Threshold Dots (toggle) ^D

Button on EyeCamera window
CLP Command: showThresholdDots BoolValue

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle
SDK Function: VPX_Video_ShowThresholdDots (bool tf);

Default: Yes

Specifies whether the image segmentation dots are displayed in the EyeCamera window.
VPX_SendCommand (“showThresholdDots No”);
VPX_SendCommand (“showThresholdDots %s”, boolVal?”Yes”:”No”);

Page 99

14.6.9 Specify EyeImage Overlay Graphics sent to layered application
(EXPERIMENTAL)

Control or Menu: -none-

CLP Command: vpx_EyeCameraImageOverlays StringArg
StringArg : +Eye_A –Eye_A +Eye_B –Eye_B

SDK Function: VPX_SetEyeImageOverlays(VPX_EyeType eye, bool tf);

VPX_EyeType : Eye_A, Eye_B

EXPERIMENTAL : This functionality is under development and may not be stable over future
versions.

This only affects the overlay graphics in the remote eye image that is sent to a layered SDK
application with the SDK function VPX_SetEyeImageWindow. It does not affect the EyeCamera
window within the ViewPoint. Also, this does not effect the display of the segmentation dots; to
remove these dots from both ViewPoint and the layered SDK application, use the command
showThresholdDots

Note carefully: the CLP and the SDK names are spelled differently.
See also:
VPX_SetEyeImageWindow
showThresholdDots

VPX_SendCommand (“vpx_EyeCameraImageOverlays off”);
VPX_SetEyeImageOverlays(Eye_A, 1);

14.6.10 EyeCamera Tool Bar Display
GUI: Video > Show Toolbar on EyeCamera window

CLP Command: videoToolBar BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_Video_ShowEyeCameraToolBar (bool tf);

Default: Yes

Specifies whether to display eye camera tool bar.
VPX_SendCommand(“videoToolBar off”);

Page 100

14.7 Video related controls

14.7.1 Specify Video Input Standard
GUI: Video > Video Standard > NTSC, PAL, SECAM

CLP Command: videoStandard Option

Option: any one of: NTSC, PAL, SECAM

SDK Function: -none-

Default: NTSC upon first run, but saved in preferences file thereafter.

Specifies which video mode to use.
ViewPoint tryes to ensure that it starts up in a friendly way each time, to facilitate this the

videoStandard selection is saved in a special Preferences file that is evaluated each time it
ViewPoint is launched.

VPX_SendCommand(“videoStandard PAL”);
VPX_SendCommand(“videoStandard SECAM”);
VPX_SendCommand(“videoStandard NTSC”);

14.7.2 Specify Tracking Operation Mode
GUI: Video > Mode > Setup, Precision, Speed

CLP Command: videoMode ProcessingMode

ProcessingMode: Setup, Precision, Speed

SDK Function: VPX_Video_Mode (VideoProcessingMode mode);

SetUp_Mode, HighPrecision_Mode, HighSpeed_Mode
Default: Setup

Specifies which operation mode to use.
VPX_SendCommand(“videoMode Precision”);
VPX_SendCommand(“videoMode Speed”);
VPX_SendCommand(“videoMode Setup”);

Page 101

14.7.3 Specify Dark or Bright Pupil Tracking
GUI: Video > Pupil Type > Dark Pupil, Bright Pupil

CLP Command: pupilType PupilType

PupilType: Dark, Bright

SDK Function: int VPX_SetPupilType (PupilMethod);

int VPX_SetPupilType2(VPX_EyeType eyn, int method);

DARK_PUPIL_Method, BRIGHT_PUPIL_Method

Specifies dark or bright pupil tracking.
VPX_SendCommand(“pupilType dark”);

14.7.4 Specify Pupil Segmentation Method
GUI: Video > Pupil Segmentation Method > Centroid, Oval Fit

CLP Command: pupilSegmentationMethod Method

Method: Centroid, OvalFit

SDK Function: -none-

Default: OvalFit

Specifies which pupil segmentation method to use, either oval fit or centroid. Actually the centroid
is obtained in either case, but OvalFit performs addititional image processing and fitting.

Note: the pupil width and pupil aspect ratio will not be available unless OvalFit is selected.
VPX_SendCommand(“pupilsegmentationMethod Centroid”);

14.7.5 Specify Glint Segmentation Method
GUI: Video > Glint Segmentation Method > Centroid, Oval Fit

CLP Command: glintSegmentationMethod Method

Method: Centroid, OvalFit

SDK Function: -none-

Default: OvalFit

Specifies which glint segmentation method to use, either ovalFit or centroid. Actually the centroid
is obtained in either case, but OvalFit performs addititional image processing and fitting.

Note: changing this may also change the values of minimumGlintScanDensity and
glintScanDensity.

VPX_SendCommand(“glintSegmentationMethod OvalFit”);

Page 102

14.7.6 Changes default setting for Freeze Feature
GUI: -none-

CLP Command: freezeStops Option

Option: all, ImageDisplay

SDK Function: -none-

Default All

Changes the default setting of stopping all video capture to just stopping the image display
preview.

VPX_SendCommand(“freezeStops ImageDisplay”);
VPX_sendCommand(“freezeSops all”);

14.7.7 Toggle Freeze Video Imge Preview On / Off
GUI: Video > Freeze Video ^F

EyeCamera window, SnowFlake button
CLP Command: videoFreeze BoolValue

BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle
SDK Function: VPX_Video_Freeze (bool tf);

Default: No

Allows freezing the video image preview, Status window display and data collection. (c.f.
freezeStops).

VPX_SendCommand(“videofreeze Yes”);

14.7.8 Reset Video Capture Device
GUI: Video > Reset Video

CLP Command: videoReset

SDK Function: VPX_Video_Reset (void);

Currently under considered for extension to accept a video stream identifier.
Resets video capture device.
VPX_SendCommand(“videoReset”);

Page 103

14.8 Calibration controls

14.8.1 Start Auto-Calibration
GUI: EyeSpace window, Auto-Calibrate / START Calibration button (toggle) ^A

CLP Command: calibrationStart

SDK Function: VPX_AutoCalibrate();

Starts the calibration process.
VPX_SendCommand (“calibrationStart”);

14.8.2 Stop Auto-Calibration
GUI: EyeSpace window, Auto-Calibrate / STOP Calibration button (toggle) ^K

CLP Command: calibrationStop

SDK Function: VPX_StopCalibration ();

Stops the calibration process before its normal completion.
VPX_SendCommand (“calibrationStop”);

14.8.3 Specify Calibration Stimulus Presentation Speed
GUI: EyeSpace window, Advanced button, Duration slider

CLP Command: calibration_StimulusDuration milliseconds
milliseconds : integer between 1 and 400

SDK Function: VPX_SetCalibrationSpeed (int milliseconds);
milliseconds: integer between 1 and 400

Default: 80 for Windows XP (depends upon the OS)

Specifies the delay in milliseconds between calibration stimulus changes (zoom rectamgle
decrements). ViewPoint attempts to set an optimal default value according to the operating
system version. The “milliseconds” secification is only approximate and unfortunately varies
between Microsoft operating system versions. This value also affects the warning time and the
inter-stimulus interval (isi) that specify durations in units of stimulus duration milliseconds.

The maximum duration is 200 ms, and the minimum is 1 ms.
VPX_SendCommand (“Calibration_StimulusDuration 145”);

Page 104

14.8.4 Specify the duration of presentation of calibration warning notice
GUI: EyeSpace window, Advanced button, Warning slider

CLP Command: calibration_WarningTime durationUnits
durationUnits: integer between 0 and 100

SDK Function: -none-

Default: 20

Specifies the delay for posting a waring that calibration is about to start. ViewPoint attempts to set
an optimal default value according to the operating system version. The time is only approximate.
The delay is in units of the stimulus duration specified by the command:
calibration_StimulusDuration

The value 0 specifies no warning is to be given.
See also:
Calibration_StimulusDuration

VPX_SendCommand (“Calibration_WarningTime 15”);

14.8.5 Specifies Interval Between Presentation of Calibration Stimulus Points
GUI: -none-

CLP Command: calibration_ISI intervalUnits
intervalUnits: integer between 1 and 9

SDK Function: -none-

Default: 2

Specifies the inter-stimulus interval between calibration points. ViewPoint attempts to set an
optimal default value according to the operating system version. The time is only approximate.
The delay is in units of the stimulus duration specified by the command:
calibration_StimulusDuration.

The value 0 specifies no ISI time.
See also:
calibration_StimulusDuration

VPX_SendCommand (“Calibration_ISI 2”);

Page 105

14.8.6 Calibration Snap Mode
GUI: EyeSpace window, Advanced button, Snap Mode checkbox

CLP Command: calibration_SnapMode BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_set_snapCalibrationMode(bool tf);

Default: No

Snap mode means that the calibration stimulus images (the zooming concentric rectangles) are not
presented, and the calibration of the currently selected point is immediately performed based on
the current eye position. This is useful for remote or manual calibration as when using the sceen
camera option and when controlling calibration with stimulus points are controlled and generated
on a remote computer; and also for use with a scene camera.

This command affects the behavior of the "Re-Present" and the "Slip-Correction"
buttons/commands and is indicated by the appearance of an asterisk (*) on these buttons when
in this special mode.

It is not necessary to enter this mode if using the command: calibration_Snap.
See also:
calibration_Snap
calibration_AutoIncrement
calibrationRedoPoint

VPX_SendCommand (“calibration_SnapMode ON”);

14.8.7 RePresent in Snap Calibration Mode
GUI: EyeSpace window, Re-Present * (when asterisk is showing)

CLP Command: calibration_Snap

SDK Function: -none-

Default:

Snap mode means that the calibration stimulus images (the zooming concentric rectangles) are not
presented, and the calibration of the currently selected point is immediately performed based on
the current eye position.

This is useful for remote or manual calibration as when using the scene camera option and when
controlling calibration with stimulus points are controlled and generated on a remote computer;
and also for use with a scene camera.

Use of this command does not require, and in may situations obviates the need for, changing the
calibration_SnapMode.

VPX_SendCommand (“calibration_Snap”);

Page 106

14.8.8 AutoIncrement Calibration Mode
GUI: EyeSpace window, Advanced button, Auot-Increment checkbox

CLP Command: Calibration_AutoIncrement BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

It affects the behavior of the "Re-Present" button/command and is indicated by a double plus (++)
on this button when in this special mode.

This mode is useful for manual calibration as with a scene camera.
VPX_SendCommand (“calibration_AutoIncrement TRUE ”);

14.8.9 Calibration Stimulus Point Presentation Order
GUI: EyeSpace window, Advanced button, Presentation Order pulldown menu

CLP Command: calibration_PresentationOrder orderChoice
orderChoice: Sequential, Random, Custom

SDK Function: -none-

This affects both auto-callibration and manual calibration that sequence through the index values.
If the user has set: calibration_PresentationOrder Sequential then the index value and the
calibration stimulus point number are the same.

VPX_SendCommand (“calibration_PresentationOrder Random”);

14.8.10 Specify Number of Calibration Stimulus Points
GUI: EyeSpace window, drop-down menu: 6 … 72

CLP Command: calibration_Points numberOfPoints
numberOfPoints : integer from the following set:
 { 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72 }

SDK Function: VPX_SetCalibrationPoints (int numberOfPoints);
numberOfPoints : integer from the following set:
 { 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72 }

Default: 16

Sets the number of calibration points to be presented.
Note that the valid values are either N x N or N x (N-1)
VPX_SendCommand (“calibration_Points 12”);

Page 107

14.8.11 Specify Calibration Stimulus Point Color
GUI: EyeSpace window, Advanced button, Set Stimulus Color button

CLP Command: calibration_StimulusColor ColorValue
 ColorValue: Red 0-255, Green 0-255, Blue 0-255

SDK Function: -none-

Specifies the red, green and blue components (0 to 255) of the calibration stimulus points E.g. ,
255 255 255 is white and 100 100 255 is a sky blue.

VPX_SendCommand (“calibration_StimulusColor 255 255 025”);

14.8.12 Specify Calibration Stimulus Window Background Color
GUI: EyeSpace window, Advanced button, Set Background Color button

CLP Command: calibration_BackgroundColor ColorValue
 ColorValue: Red 0-255, Green 0-255, Blue 0-255

SDK Function: -none-

Specifies the red, green and blue components (0 to 255) of the calibration Stimulus window
background E.g. , 255 255 255 is white and 100 100 255 is a sky blue.

VPX_SendCommand (“calibration_BackgroundColor 050 100 255”);

14.8.13 Randomize Calibration Stimulus Points Check Box (DEPRECATED)
GUI: EyeSpace window, Advanced button, Randomize Calibration checkbox

CLP Command: calibration_randomize BoolValue
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Yes

DEPRECATED
calibration_Randomize ON � calibration_PresentationOrder Random
calibration_Randomize OFF � calibration_PresentationOrder Sequential
See also:
calibration_PresentationOrder

VPX_SendCommand (“calibration_randomize ON”);

Page 108

14.8.14 Specify Calibration Stimulus Point Presentation Order
GUI: -none-

CLP Command: calibration_CustomOrderList n1 n2 n3 n4 n5 n6 ...

SDK Function: -none-

Default: 6 5 4 3 2 1 9 8 7 12 11 10 16 15 14 13 20 19 18 17 21 22 23 …

Allow specification of up to 72 calibration point in the desired order of presentation.
Caution: An error will occur if the user has provided a point number in the list, which is larger than

the selected number of calibration Points (i.e., the quantity of calibration points). For example, if
the user specified: customOrderList 6 72 4 69 2 1 and also specified: calibrationPoints 6, the
points 72 and 69 would cause errors, because they are greater than 6.

See also:
calibration_SelectIndex
calibration_SelectPoint

calibrationPoints
VPX_SendCommand (“calibration_ CustomOrderList 6 1 5 2 4 3”);

14.8.15 Specify Individual Custom Calibration Stimulus Points
GUI: -none-

CLP Command: calibration_CustomOrderEntry index calStimPoint
index : integer in { 1 to N }
calStimPoint : integer in { 1 to N }

SDK Function: -none-

Default: See calibration_CustomOrderList, just above.

Used to specify individual custom calibration point entries.
Caution: see the Caution section in calibration_CustomOrderList, above.
See also:
calibration_SelectIndex
calibration_SelectPoint

VPX_SendCommand (“calibration_CustomOrderEntry 1 6”);

Page 109

14.8.16 Display Custom Calibration Stimulus Point Order
GUI: -none-

CLP Command: calibration_CustomOrderDump

SDK Function: -none-

Default:

Prints the customOrder of calibration points to the History window.
VPX_SendCommand (“calibration_CustomOrderDump”);

14.8.17 Select the Specified Calibration Data Point
GUI: EyeSpace window, Data Point slider

or/ Click mouse in EyeSpace window, calibration graphics well
CLP Command: calibration_SelectPoint pointSelection

pointSelection: LAST, NEXT, or int { 1 .. N }
SDK Function: VPX_EyeSpace_SelectPoint (int SelectPoint);

Selects the specified calibration data point. The point will be highlighted in the EyeSpace window.
See also:
calibration_SelectIndex

VPX_SendCommand (“calibrationSelectPoint 7”);

Page 110

14.8.18 Select the Index Number that Maps to the Specified Calibration Data Point
GUI: -none

CLP Command: calibration_SelectIndex indexSelection
indexSelection: LAST, NEXT, or int { 1 .. N }

SDK Function: -none-

Selects the index number that maps to a calibration stimulus point. The corresponding stimulus
point will be highlighted in the EyeSpace window and the calibration data point slider will be
adjusted.

When the calibration_PresentationOrder is Sequential the selected index and the selected point
are the same. When calibration_PresentationOrder is Random or Custom, the index is
incremented and the selected point is taken from the random, or custom, table.

Note: if the user has set: calibration_PresentationOrder Random then the series is re-
randomized every time the set finishes, so that there is an new set for the next loop.

See also:
calibration_SelectPoint

calibration_PresentationOrder

calibration_CustomList

calibration_CustomOrderEntry index calStimPoint
VPX_SendCommand (“calibration_SelectIndex 7”); // look up Pt# in CustomList

14.8.19 Undo the last operation on a Calibration Data Point
GUI: EyeSpace window, Undo button

CLP Command: calibrationUndo

SDK Function: VPX_calibUndo

Re-centers the selected calibration point.
VPX_SendCommand (“calibrationUndo”);

Page 111

14.8.20 Re-Present the Specified Calibration Data Point
GUI: EyeSpace window, Re-present button

CLP Command: calibrationRedoPoint CalibrationPoint
CalibrationPoint: Numbered point to select.

SDK Function: VPX_ReCalibratePoint (int SelectPoint);

Re-presents the specified calibration data point.
The behavior is determined by the calibration_SnapMode and calibration_AutoIncrement

specifications.
The CalibrationPoint parameter is optional, if omitted, the currently selected calibration point will be

re-presented.
Note: the point number corresponds to the slider values in the EyeSpace window and does not

depend on the calibration method chosen.
See also:
calibration_SnapMode
calibration_AutoIncrement

VPX_SendCommand (“calibrationRedoPoint 7”);
VPX_SendCommand (“calibrationRedoPoint”); // defaults to current point

14.8.21 Specify Custom Calibration Stimulus Point Locations
GUI: -none-

CLP Command: calibration_CustomPoint 2 0.95 0.95

SDK Function: VPX_SendCommand(“calibration_CustomPoint %d %g %g”, pointIndex, loc.x, loc.y);

Specifies custom locations of the calibration stimulus points. Note: the nearest-neighbor grid-lines
in the EyeSpace are not automatically draw when this option is used, because the points could
be in any configuration.

See also:
calibration_CustomPointsUsed
calibration_CustomPointDump

VPX_SendCommand (“calibration_CustomPoint 2 0.95 0.95”);

Page 112

14.8.22 Turn Custom Calibration Stimulus Point Location ON / OFF
GUI: -none-

CLP Command: calibration_CustomPointsUsed BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_SendCommand(“calibration_CustomPoint %d %g %g”, pointIndex, loc.x, loc.y);

Turns custom calibration stimulus point location on or off.
See also:
calibration_CustomPoint
calibration_CustomPointDump

VPX_SendCommand (“calibration_CustomPointsUsed YES”);

14.8.23 Print Locations of custom calibration stimulus points in EventHistory window
GUI: -none-

CLP Command: calibration_CustomPointDump

SDK Function: VPX_SendCommand(“calibration_CustomPointDump”);

Prints the custom calibration point list in the History window..
See also:
calibration_CustomPoint
calibration_CustomPointsUsed

VPX_SendCommand (“calibration_CustomPointDump”);

14.8.24 Controls display of nearest-neigbor gridlines in the EyeSpace window
GUI: -none-

CLP Command: calibration_showEyeSpaceGrid BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_SendCommand(“calibration_showEyeSpaceGrid”);

Turns ON or OFF the “spider web” nearest-neighbor grid between calibration points in the
EyeSpace window.

See also:
calibration_CustomPointsUsed

VPX_SendCommand (“calibration_showEyeSpaceGrid”);

Page 113

14.8.25 Compensate for Slip
GUI: EyeSpace window, Slip-Correction button

CLP Command: calibrationSlipCorrection CalibrationPoint
CalibrationPoint: Numbered point to select.

SDK Function: VPX_SlipCorrection (int SelectPoint);

Re-presents the specified calibration data point and re-aligns calibration to compensate for slip.
Normally a point near the center of the display should be chosen.

See also:
calibration_SnapMode

VPX_SendCommand (“calibrationSlipCorrection 7”);

14.8.26 Adjust Calibration Area
GUI: Controls window, Regions Tab, Calibration Region radio button

CLP Command: calibrationRealRect L T R B
L T R B: Normalized floating point values for the corners.

SDK Function: -none-

Default: 0.1 0.1 0.9 0.9

Allows the user to adjust the calibration area (size and position) within which the calibration
stimulus points are presented. The four values are the floating point coordinates (0.0 – 1.0) of the
bounding rectangle, listed in the order: Left, Top, Right, Bottom.

VPX_SendCommand (“calibrationRealRect 0.2 0.2 0.8 0.8”);

14.8.27 Save Image of Eye at each Calibration Data Point
GUI: -none-

CLP Command: calibration_SaveEyeImages BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

When enabled this command will take a snapshot of the eye during calibration stimulus
presentation at each calibration point. This feature is useful to examine the position of the eye
when presented the stimulus. This allows users to determine any problems with subjects eyes or
loss of a direct image of the pupil at a certain calibration point.

VPX_SendCommand (“calibration_SaveEyeImages yes”);

Page 114

14.9 Controls: Criteria Controls

14.9.1 Specify amount of Smoothing
GUI: Controls window, DataCriteria tab, Smoothing Points slider

CLP Command: smoothingPoints IntValue

SDK Function: VPX_SetSmoothing (IntValue);

Default: 4

The amount of smoothing to apply to the gaze position. The number specifies the number of
previous sample point to use in the trailing average. A value of 4 makes attractive and useful
real-time graphics. The value 1 indicates to use only the current point, i.e., no smoothing.

See also:
smoothingMethod, velocityCriterion

Modified: 2.8.2.44
VPX_SendCommand (“smoothingPoints 3”);

14.9.2 Specify Smoothing Algorithm to Apply
Control or Menu: -none-

CLP Command: smoothingMethod method

method: SMA, EMA
SDK Function: -none-

Default: SMA

The user may choose between two smoothing algorithms: Simple Moving Average (SMA) and
Exponential Moving Average (EMA).

The SMA method uniformly averages N pointsBack, i.e., all points having equal weight.
 SMA(t) = [x(t) + x(t-1) + ... + x(t-n)] / N ; where n = (N-1)

The EMA method uses the following algorithm:
 EMA(t) = (currentValue - EMA(t-1)) * K + EMA(t-1) ; where K = 2 / (pointsBack + 1).

The number of pointsBack is adjusted by the Smoothing slider or the CLP command

smoothingPoints N.
Note: The successfully set method is currently reported in the Event History window.
See also:
smoothingPoints

Added: 2.8.2.44
VPX_SendCommand (“smoothingMethod EMA”);

Page 115

14.9.3 Specify Velocity Threshold
Control or Menu: Controls window, DataCriteria tab, Saccade Velocity slider

CLP Command: velocityCriterion NormalizedValue
velocityThreshold NormalizedValue
 NormalizedValue: floating point number in range 0.0 to 1.0

SDK Function: -none-

Default: 0.10

The velocity level that is used to distinguish between saccades and fixations. This criterion
threshold value is displayed in the penplot window plot for total velocity.

Note that the velocity magnitude, and consequently the required threshold, will be affected by the
amount of smoothing applied.

See also:
smoothingPoints

driftCriterion

VPX_SendCommand (“velocityCriterion 0.8”); // Prefered
VPX_SendCommand (“velocityThreshold 0.45”); // OlderForm

14.9.4 Specify amount of Drift Allowed
Control or Menu: Controls window, DataCriteria tab, Fixation Drift Allowed slider

CLP Command: driftCriterion NormalizedValue
 NormalizedValue: floating point number in range 0.0 to 1.0

SDK Function: -none-

Default: 0.03

Specifies the absolute drift away from the fixation start point, or the last drift start point, that is
tolerated before a Drift classification is made. The units are in normalized stimulus window
coordinates, just like gaze point.

Without a Drift Criterion, the eyes can slowly change position and still be classified as a Fixation,
because the velocity never exceeded the Saccade Velocity Criterion.

This criterion threshold value is displayed in the penplot window plot for for Drift.
See also:
velocityCriterion

penPlot +DRIFT
Changes:

Default value changed in version 2.8.3 from 0.1 to 0.03
VPX_SendCommand (“driftCriterion 0.025”);

Page 116

14.9.5 Specify Pupil Aspect Ratio Failure Criterion
GUI: Controls window, DataCriteria tab, Pupil Aspect Criterion

CLP Command: pupilAspectCriterion NormalizedValue
NormalizedValue: a floating point number in range 0.0 to 1.0

SDK Function: VPX_SetPupilOvalCriteria (NormalizedValue);

Default: 0.05

Specifies the aspect ratio at which the data quality marker indicates that there
s a problem. The default value is 0.05 , so that any aspect ratio is accepted.
Typically a useful value is about 0.8 Adjust the pupil oval ratio criteria for
classification as the pupil. Range 0.0 – 1.0. The pupil oval fit changes color from yellow to
orange when criterion is violated.
VPX_SendCommand (“pupilAspectCriterion 0.8”);

14.9.6 Specify Pupil Width Failure Criterion
GUI: Controls window, DataCriteria tab, Maximum Pupil Width slider

CLP Command: pupilMaxWidthCriterion NormalizedValue
NormalizedValue: a floating point number in range 0.0 to 1.0

SDK Function: -none-

Default: 0.75

Specifies the pupil width at which the data quality marker indicates that there is a problem.
VPX_SendCommand (“pupilMaxWidthCriterion 0.35”);

Page 117

14.10 Region of Interest (ROI)

14.10.1 Define an ROI Box
GUI: -none-

CLP Command: setROI_RealRect Index L T R B
Index: Integer value indicating the ROI to specify.
L T R B: Normalized floating point values for the corners.

SDK Function: int VPX_SetROI_RealRect (int n, RealRect rr)

Default: One box the center and eight iso-eccentric boxes.

Defines a Region of Interest (ROI) (aka window discriminator box) The first value <n> specifies
which ROI to adjust. The next four values are the normalized (0.0 to 1.0) coordinates of the
bounding rectangle.

See also:
 setROI_AllOff
 setROI_isoEccentric
 VPX_GetROI_RealRect(n,rr);
 VPX_drawROI(HWND hWnd, int activeRegion);

VPX_SendCommand (“setROI_RealRect 5 0.1 0.1 0.9 0.9”);
// Sets ROI #5 with 10% margins

14.10.2 Specify Number of ROI to be drawn in a circle around center of window
GUI: -none-

CLP Command: setROI_isoEccentric NumberOfBoxes
NumberOfBoxes: integer number of ROI in a circle.

SDK Function: VPX_SetROI_isoEccentric (int numberOfBoxes);

Specifies the number of ROI boxes to be drawn in an isoeccentric distribution, i.e., in a circle
around the center of the window. This also clears previous ROI box settings and refreshes the
displays.

VPX_SendCommand(“setROI_isoEccentric 15”);

Page 118

14.10.3 Remove all ROI Boxes
GUI: Controls window, DataDisplay tab, ROI Regions checkbox

CLP Command: setROI_AllOff

SDK Function: -none-

Removes all ROI boxes.
VPX_SendCommand(“setROI_AllOff”);

14.10.4 Select a Specific ROI
GUI: Controls window, Regions tab, Region: slider

CLP Command: setROI_Selection ROIbox

ROIbox : integer number of the box to be selected. i.e. 1 or
2 or 3 ect. Up to the max number of ROI boxes enabled.

SDK Function: -none-

Default: -none-

Select ROI number N. The selected ROI is shown in red when the ROI overlay graphics is shown.
This can be used to highlight one particular ROI.
See also: ”setROI_Lock”
VPX_SendCommand(“setROI_Selection 9”);

14.10.5 Select the next ROI Box
GUI: Controls window, Regions tab, Region: slider F8

CLP Command: setROI_selectNext

SDK Function: -none-

Select the next ROI number. This can be used to highlight an area.. (current + 1). The selected
ROI is drawn in red when the ROI overlay graphics is shown. This can be used to highlight an
area.

HINT: A mouse wheel is extremely helpful for moving between selections of the region slider.
VPX_SendCommand(“setROI_selectNext”);

Page 119

14.10.6 Lock ROI Settings
GUI: Controls window, Regions tab, Region: slider, None

CLP Command: setROI_Lock

SDK Function: -none-

Deselects all ROI, i.e. no ROI is selected.
See also: ” setROI_Selection N”
VPX_SendCommand(“setROI_Lock”);

14.11 PenPlot controls

14.11.1 Specify Which PenPlot Traces to Display
GUI: Menu : PenPlots >

CLP Command: penPlot +chartItemName - chartItemName

chartItemName : any of the following:

All, Tming, Vergence, Xvelocity, Yvelocity, Tvelocity, Width,
Aspect, Xgaze, Ygaze, Xangle, Yangle, Torsion, Seconds,
HeadPosition, HeadAngle, Xpupil, Ypupil, Xglint, Yglint,
Drift, Events, fixationTime, Timing, ROI, Quality

SDK Function: -none-

Default: +Xgaze +Ygaze +Velocity +Aspect +Drift

Specifies which penPlots to display in the PenPlot window. To include a plot preceed its name
stiring with a “+”, to exclude it preceed its name with “-“. Be carefule that there is no white space
between + or - and the string. Separate multiple strings arguments on the same line with a
space, as in the exaple below.
+Velocity +Width +Aspect +Timing
+Vergence (data available with binocular option only)
+HeadPosition (data available with head track option only)
+HeadAngle (data available with head track option only)
+xPupilPoint +yPupilPoint (raw eyespace pupil position data as a function of time)
+XAngle +YAngle (data valid only when accurate GeometryGrid measurements are set)
VPX_SendCommand(“penPlot +Xgaze +Ygaze –Tvelocity +Width +Aspect –Timing”);

Page 120

14.11.2 BackGround Color of PenPlot Traces
GUI: -none-

CLP Command: penPlot_BackgroundColor ColorValue
 ColorValue: Red 0-255, Green 0-255, Blue 0-255

SDK Function: -none-

Default: 160, 160, 160

Controls of background color for penPlot stripChart windows.
See also:
penPlot_LimenFillColor

VPX_SendCommand(“penplot_BackgroundColor 115 100 235”);

14.11.3 PenPlot Back Ground Color
GUI: -none-

CLP Command: penPlot_LimenFillColor ColorValue
 ColorValue: Red 0-255, Green 0-255, Blue 0-255

SDK Function: -none-

Default: 144, 144, 144

Specifies the color that fills the rectangle within the criterion lines (threshold, limen) in the penPlots.
The default value is slightly darker gray than the default penPlot_BackgroundColor.

See also:
penPlot_BackgroundColor

VPX_SendCommand(“penplot_ LimenFillColor 115 100 235”);

14.11.4 Specify Speed ot PenPlot Scrolling
GUI: Menu : PenPlots > Speed > { ¼ x, ½ x, 1x, 2x, 4x, 8x, 16x }

CLP Command: penPlot_Speed xInc
 xInc: float

SDK Function: -none-

Default: 2

Specifies the number of pixels to increment the the penPlot along the x (time) axis.
Sometimes it is desirable to increase the speed of the penPlot scrolling, so that details, markers,

and classifications can be more easily distinguished.
Modified: 2.8.2.51
VPX_SendCommand(“penPlot_speed 6”);

Page 121

14.11.5 Specify Range of PenPlot Values
GUI: -none-

CLP Command: penPlot_Range plotName lowerValue upperValue
 plotName: any of:

XGaze, YGaze, Drift, Fix, Vergence, Xvelocity,
Yvelocity, Tvelocity, Width, Aspect, XAngle, YAngle,
Torsion, HeadPosition, HeadAngle, XPUPIL, YPUPIL,
XGLINT, YGLINT, Vergence

lowerValue, upperVAlue: float
SDK Function: -none-

Default: varies depending on plotName

Specifies the lower and upper plot range values for a particular penPlot graph.
Added: 2.8.2.51
VPX_SendCommand(“penPlot_Range xgaze 0.2 0.6”);

14.11.6 Specify the behavior of the penpot after a video freeze
GUI: -none-

CLP Command: penPlot_restartAfterFreeze BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: No

Specifies the behavior of the penpot after a video freeze. Specifies whether or not the pen will
continue going from where it is, or if the penplot window will be erased and the pen will reset and
start afresh from the left.

VPX_SendCommand(“penplot_restartafterfreeze Yes”);

Page 122

14.12 Graphics controls

14.12.1 Specify the color of the GazeSpace and PenPlot Lines
GUI: Controls window, DataDisplay tab, Eye A button or , Eye B button

CLP Command: penColorA ColorValue
penColorB ColorValue
 ColorValue: Red 0-255, Green 0-255, Blue 0-255

SDK Function: -none-

Default: penColorA: 100 255 0 (limeGreen); penColorB : 0 255 255 (cyan)

Specifies the red, green and blue components (0 to 255) of the gazespace and penPlot lines. E.g.
, 255 255 255 is white and 100 100 255 is a sky blue.

VPX_SendCommand(“pencolorA 115 100 235”);
VPX_SendCommand(“pencolorB 0 255 0”); // Green

14.12.2 Specify which Overlay Graphics to Display in the GazeSpace Window
GUI: Controls window, DataDisplay tab, Gaze option checkbox matrix

CLP Command: gazeGraphicsOptions +graphicsOptions -graphicsOptions
graphicsOptions : +ROI +POG +Path +Fix +Size +Grid +Cal +Raw

SDK Function: -none-

Default: +ROI +Path +Image

Specifies which overlay graphics to display in the GazeSpace window.
Use -graphicsOption to exclude an option, or use +graphicsOption to include an option.
Note: The +/- must be next to the key work, i.e., NOT separated from it by a space.
Separate multiple arguments by spaces, as in the example here below.
See also: stimulusGraphicsOptions
VPX_SendCommand(“gazeGraphicsOptions +POG –Raw –ROI”);

Page 123

14.12.3 Specify which Overlay Graphics to Display in the Stimulus Window
GUI: Controls window, DataDisplay tab, checkbox matrix

CLP Command: stimulusGraphicsOptions +graphicsOptions -graphicsOptions
graphicsOptions :
+ROI +POG +Path +Fix +Size +Grid +Cal +Raw +Image

SDK Function: -none-

Default: +POG +Image

Specifies which overlay graphics to display in the Stimulus window.
Use -graphicsOption to exclude an option, or use +graphicsOption to include an option.
Note: The +/- must be next to the key work, i.e., NOT separated from it by a space.
Separate multiple arguments by spaces, as in the example here below.
See also: gazeGraphicsOptions
VPX_SendCommand(“stimulusGraphicsOptions +POG –Raw –ROI”);

14.12.4 Erase Data Displays in the GazeSpace and Stimulus windows
GUI: Controls window, DataDisplay tab, Erase Display button

CLP Command: eraseDisplays

SDK Function: -none-

Clears the previous drawn data from the GazeSpace and Stimulus windows.
See also:
timedErase_autoErase
timedErase_delaySeconds

VPX_SendCommand(“eraseDisplays”);

Page 124

14.12.5 Automatically erase display windows
GUI: -none-

CLP Command: timedErase_autoErase BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Automatically erase display windows.
See also:
timedErase_delaySeconds
eraseDisplays

VPX_SendCommand(“timedErase_autoErase On”);
VPX_SendCommand(“timedErase_ delaySeconds 6.5”);

14.12.6 Specify time delay for auto erase
GUI: -none-

CLP Command: timedErase_delaySeconds seconds
seconds : floating point number

SDK Function: -none-

Default: Off

Automatically erase display windows.
See also:
timedErase_autoErase
eraseDisplays

VPX_SendCommand(“timedErase_autoErase On”);
VPX_SendCommand(“timedErase_ delaySeconds 6.5”);

Page 125

14.13 Stimulus Window controls

14.13.1 Specify Stimulus Source
GUI: Stimuli > View Source > { StimulusWindow, SceneCamera,

Interactive Computer Display ... }

CLP Command: viewSource options
options: StimulusWindow, SceneCamera, 1, 2, 3

SDK Function: -none-

Default: Yes

Specify the type of stimulus the subject will be viewing.

VPX_SendCommand(“viewSource SceneCamera”);

Page 126

14.13.2 Specify Custom Stimulus window Size and Position
GUI: 1st) select style Stimuli> Stimulus Window Properties > Normal Adjustable

Window
2nd) resize the window by dragging its border
3rd) change style: Stimuli> Stimulus Window Properties > Custom Static
Position

CLP Command: stimWind_CustomStatic L T R B
L T R B: Normalized floating point values for the physical
dimensions.

SDK Function: VPX_StimWind_CustomStatic (“int x1, int y1, int x2, int y2”);

Specifies a custom position and size of the Stimulus window. Where L,T,R,B correspond to the
left, top, right and bottom physical dimensions in the display space. The following example
assumes that we have a secondary display placed in the virtual desktop with the tops of the two
displays at the same level, namely zero. Further, the primary monitor is 1280 x 1024 and the
secondary is 1024 x 768, such that the top left origin of the primary monitor is at (0,0), the top left
origin of the seconday monitor is at (1280,0), and the extreme diagonal bottom right point is at
(1280+1024,768) or (2304,768) stimWind_CustomStatic 1280 0 2304 768.

Sets the custom static Stimulus window in the position specified. Displays the Stimulus window
as a static window (no borders or title bar). The window will be always in front. This is useful if the
graphics card does not show a second display.

This neither (i) switches the display selection to Custom Static, nor (ii) causes the stimulus window
to be shown.

Note: obsolete term ‘customStimulusWindow’ would raise the window.
See also:
stimWind_FullDisplay Custom

setWindow Stimulus Show
stimulus_ImageHidden

VPX_SendCommand(“stimWind_CustomStatic 1280 0 2304 768”);
VPX_SendCommand(“setWindow Stimulus Show”);

Page 127

14.13.3 Automatically Show the Stimulus Window on Primary Monitor
GUI: Stimuli> Stimulus Window Properties > AutoShow on Calibrate

CLP Command: stimwind_AutoShowOnCalibrate BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_StimWind_AutoShowOnCalibrate (bool tf);

Default: Yes

ViewPoint has been designed to make calibration easy and fast, even when there is only one
computer display, and when the experimenter wants to do self-testing.

If (i) the AutoShowOnCalibrate feature is active, (ii) the stimulus window is set to display full screen
on the primary monitor, and (iii) the stimulus window is hidden, then ViewPoint will automatially
show (unhide) the stimulus window, whenever a calibration start procedure starts.

See also:
stimWind_FullDisplay 1

VPX_SendCommand(“stimwind_autoshowoncalibrate No”);

Page 128

14.13.4 Specify How and where to show Stimulus window
GUI: Stimuli> Stimulus Window Properties > Normal Adjustable

Stimuli> Stimulus Window Properties > Custom Static
Stimuli> Stimulus Window Properties > Full Screen Monitor 1 (Primary)
Stimuli> Stimulus Window Properties > Full Screen Monitor 2
Stimuli> Stimulus Window Properties > Full Screen Monitor 3
etc.

CLP Command: stimWind_FullDisplay OptionString

MonitorNumber: integer
OptionString : Adjustable, Custom, 1, Primary, 2, Secondary

SDK Function: VPX_StimWind_FullDisplay (int monitor)

VPX_StimWind_Adjustable(void)

Default: 1

Specifies where and how to display the stimulus window. Arguments Primary, 1, Seconday, 2,
etc.specify that the stimulus window will be displayed full screen on these monitors. Adjustable
indicates that the stimulus window is to be displayed as a regular adjustable-size floating window.
Custom was primarily developed to help users who have dual monitor display card that do not
correcly tell the Windows OS that there are two devices; these are now rare.

Note 1 :
This command ONLY specifies the selection of the device on which the stimulus window will be

displayed (or is displayed, if the stimulus window is currently showing), it does NOT cause the
stimulus window to be shown. There are advantages to separating these instructions for (i)
selecting the device and for (ii) showing / hiding the window, not the least of which is
isomorphism to the conceptual layout of the GUI menu item groupings.

Note 2:
In previous versions, prior to 2.8.3, the argument 0 corresponded to the instruction to Hide the

stimulus window, or in some previous versions, to toggle Show / Hide. Argument 0 should no
long be used and its effect may be unpredictable.

See also:
setWindow STIMULUS SHOW
setWindow STIMULUS HIDE
stimWind_CustomStatic
stimWind_AutoShowOnCalibrate

Modified: 2.8.2.52
VPX_SendCommand(“stimWind_FullDisplay Seconday”);

Page 129

14.13.5 Calibrate to a third party application window
GUI: -none-

CLP Command: -none-

SDK Function: VPX_SetExternalStimulusWindow(HWND hMyWndow);

This provides a mechanism for ViewPoint to draw the calibration stimuli directly into a window
created by another application. The argument to this function is the handle of the created window.
CAUTION: When finished, the programmer must make certain to call this function again
with a NULL HWND argument (or the handle of yet another window), before destroying the
created window.
The calibration stimuli are still drawn in the ViewPoint Stimulus and GazeSpace windows, as usual.
See sampe code in:
VPX_ MFC_Demo.cpp

Contrast to:
HWND VPX_GetViewPointStimulusWindow();

CWnd* pWnd = GetDlgItem(IDC_StimulusPicture) ;
HWND hWnd = pWnd->GetSafeHwnd() ;
VPX_SetExternalStimulusWindow(hWnd);

14.14 Window related controls

14.14.1 Print ViewPoint windows
GUI: File > Print > * window

CLP Command: printWindow windowNameString
windowNameString: Main, EyeCamera, EyeSpace, Controls,
Status, GazeSpace, PenPlot

SDK Function: -none-

Using this command, windows can be sent to a printer.Note: you may want to select Freeze before
Print to prevent pull down menu occlusion.

See also:
printDateTimeStamp

VPX_SendCommand(“printWindow EyeCamera”);

Page 130

14.14.2 Include Date and Time Stamp on Printed windows
GUI: File > Print > Date Timestamp printouts (toggle)

CLP Command: printDateTimeStamp BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: On

It is often useful to have the current date and time stamp included on printouts. Use this command
to turn this feature on or off.

See:
printWindow
VPX_SendCommand(“printDateTimeStamp Off”);

14.14.3 Move and Resize Window
GUI: Drag window with mouse, resize window with mouse.

CLP Command: moveWindow windowNameString L T R B
windowNameString: Main, EyeCamera, EyeSpace, Controls,
Status, GazeSpace, PenPlot
L T R B: four integers describing the left, top, right
and bottom corners of the window rectangle.

SDK Function: -none-

Both moves and resizes a particular window to the defined cordinates.
See also:
setWindow

RECT r = { 0, 0, 500, 800 };
VPX_SendCommand(“moveWindow PenPlot %d %d %d %d”,r.left,r.top,r.right,r.bottom)
VPX_SendCommand(“moveWindow GazeSpace 15 38 25 73”);

Page 131

14.14.4 Specify ViewPoint Window Layout
GUI: Windows > { WindowName } (Toggle)

Windows > Arrange > { Starup Layout, Cascade }
CLP Command: setWindow windowNameString windowState

setWindow windowLayout
windowNameString:
Main, EyeCamera, EyeSpace, Controls, Status, GazeSpace,
PenPlot, Stimulus

windowState: Show, Hide, Maximize, Minimize
windowLayout: Startup, Cascade

SDK Function: int VPX_Video_WindowVisible (BOOL tf);

int VPX_StimWind_Hide(void);

Allows the user to easily control the state of all ViewPoint EyeTracker windows.
setWindow Startup: equivalent to: Windows > Arrange > Startup layout
setWindow Cascade: equivalent to: Windows > Arrange > Cascade
Note: “setWindow Stimulus Hide” is different from the command “stimulusGraphicsOptions –

Image”, the latter suppresses showing the bitmap image inside the stimulus window.
See also:
moveWindow
stimWind_FullDisplay
stimWind_AutoShowOnCalibrate

Deprecated:
stimWind_Hide

VPX_Send Command(“setWindow Stimulus Show”);
VPX_Send Command(“setWindow GazeSpace Minimize”);
VPX_Send Command(“setWindow PenPlot Maximize”);

14.14.5 Clear Event History window
GUI: Windows > Clear History

CLP Command: eventHistory_Clear
No arguments.

SDK Function: -none-

Clears the EventHistory window.
VPX_SendCommand(“eventHistory_Clear”);

Page 132

14.14.6 Save window layout settings
GUI: File > Settings > Save Window Layout

CLP Command: settingsFile_SaveWindowLayout No arguments.

SDK Function: -none-

The window layout information can be saved in a Settings file. It is not saved as part of the
standard Save Settings operation.

See also:
settingsFile_Save
settingsFile_Load

VPX_SendCommand(“settingsFile_SaveWindowLayout”);

14.15 Settings File commands

14.15.1 Load Settings File
GUI: File > Settings > Load Settings … ^L
CLP Command: settingsFile_Load filename

 filename: Name of the settings file to be loaded.
SDK Function: -none-

Loads a settings file of the specified file name. Recursion is not allowed. Nesting depth is limited to
9.

See also:
settingsFile_SaveWindowLayout

VPX_SendCommand(“settingsFile_Load researchsettings”);

14.15.2 Edit Settings File
GUI: File > Settings > Edit Settings File …

CLP Command: settingsFile_EditDialog

SDK Function: -none-

Enables user to quickly access and edit Settings files.
VPX_SendCommand(“settingsFile_EditDialog”);

Page 133

14.15.3 Show Verbose Settings File Loading Details in Event History
GUI: File > Settings > Verbose Loading

CLP Command: settingsFile_Verbose BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: No

Specifies whether to report verbose loading details.
VPX_SendCommand(“setingsFile_verbose Yes”);

14.15.4 Save Settings e.g. calibrations etc.
GUI: File > Settings > Save Settings … Alt-Shift-S

CLP Command: settingsFile_Save Filename
 Filename: Name of the settings file to be saved.

SDK Function: -none-

Saves a settings file with the specified file name.
See also:
settingsFile_SaveWindowLayout

VPX_SendComand(“settingsFile_save researchsettings”);

14.16 SettingsFileList commands

14.16.1 Initialize Settings File List
GUI: -none-

CLP Command: settingsFileList_Init

SDK Function: -none-

Initializes the list for settings file, making it ready for new settings to be entered.
VPX_SendCommand(“settingsFileList_Init”);

Page 134

14.16.2 Next Settings File in List
GUI: File > settings > SettingsFileList > Next Settings File F9 (default)

CLP Command: settingsFileList_Next

SDK Function: -none-

Executes the settings for the next settings file in the settings file list.
VPX_SendCommand(“settingsFileList_Next”);

14.16.3 Add Settings File to the List
GUI: -none-

CLP Command: settingsFileList_AddName FileName
FileName: Name of the settings file to be added to the
settings file list.

SDK Function: -none-

Adds a settings file name to the settings file list.
VPX_SendCommand (“settingsFileList_AddName subject1.txt”);

14.16.4 Restart Settings File List
GUI: File > Settings > SettingsFileList > Restart SettingsFileList

CLP Command: settingsFileList_Restart

SDK Function: -none-

Reopens the settings file list and re-applys the settings listed in the setting files.
VPX_SendComand(“settingsFileList_Restart”);

14.16.5 Toggle Autosequencer ON / OFF
GUI: File > settings > settingsfilelist > Auto Sequencer F10 (default)

CLP Command: settingsFileList_AutoSequence BoolValue
 BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Enables or disables settings file list sequencer.
VPX_SendCommand(“settingsFileList_AutoSequence on”);

Page 135

14.16.6 Specify delay between Settings Files in List
GUI: -none-

CLP Command: settingsFileList_SequenceSeconds TimeValue
TimeValue: Amount of sequence seconds.

SDK Function: -none-

Creates a delay between loading settings-files from the settings-file-list. Users may also specify
sequence-seconds within the settings files themselves rather then in a settings-file-list.

Will create a delay in the execution of settings files from the list for as long as specified. Also note
that the sequence seconds can be set within a settings file itself

VPX_SendCommand(“settingsFileList_SequenceSeconds 4.5”);

14.17 Torsion commands

14.17.1 Start / Stop Torsion Calculations
GUI: Torsion window, Start / Stop button ^T

CLP Command: torsion_Calculation BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: off

Starts and stops the torsion calculations. As a side effect this also adds or removes the torsion
stripChart from from the penPlot window.

Note 1: In previous PC versions this command would open and close the torsion window as well,
because in those previous versions, torsion would be calculated if and only if the torsion window
were open.

See also:
VPX_GetTorsion2

VPX_SendCommand(“torsion_Calculation On”);

Page 136

14.17.2 Adjust Start Point of Torsion Sampling Arc
GUI: Torsion window, Angle slider

CLP Command: torsion_SampleAngle FloatDegrees
 FloatDegrees: floating point value 0.0 to 360.0 degrees

SDK Function: -none-

Default: 180

Adjusts the start point of the torsion sampling arc in degrees.
Range from 0 - 360.
Zero degrees is at the 3 o’clock position, 90 degrees is at the 6 o’clock position.
An interesting demonstration and validation can be obtained on a static image by first unchecking

the Auto-set after adjust check box and then moving the Angle slider a few degrees. This
moves the start point of the sample vector and so the autocorrelation shows a “torsional” rotation
of the same number of degrees.

VPX_SendCommand(“torsion_SampleAngle 166”);

14.17.3 Adjust Radius of Torsion Sampling Arc
GUI: Torsion window, Radius slider

CLP Command: torsion_SampleRadius FloatValue
 FloatValue: normalized floating point number 0.01 - 0.99

SDK Function: -none-

Default: 0.50

Adjust the radius (the distance out from the center of the pupil) of the torsion sampling arc. The arc
should be adjusted such that: (a) ther is good variation in the striations and marks of the iris, (b)
the arc does not include any reflections, such as the glint, that do not move with the iris, (c) the
arc does not extend beyond the EyeCamera window.

VPX_SendCommand(“torsion_SampleRadius 0.75”);

Page 137

14.17.4 Autoset Torsion Template after Adjustments
GUI: Torsion window, Auto-Set after adjust checkbox

CLP Command: torsion_AutoSetAfterAdjust BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: On

If ON, a new autocorrelation template is set whenever adjustments are made to the radius and
angle.

VPX_SendCommand(“torsion_autosetafteradjust On”);

14.17.5 Display Real-Time Torsion Data
GUI: Torsion window, Real-time graphics checkbox

CLP Command: torsion_RealTimeGraphics BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Specifies whether to display real-time torsion data in the torsion window. If ON the window is
updated every new field. If OFF, the window is updated every 30’th field. This does not affect the
real-time data stored in the data file, but does effect the CPU load.

VPX_SendCommand(“torsion_RealTimeGraphics On”);

Page 138

14.17.6 Adjust Torsion Measurement Range
GUI: -none-

CLP Command: torsion_MeasureDegrees FloatDegrees

SDK Function: -none-

Default: +/- 9.0

Adjusts the torsion measurement range.
Default is +/- 9 degrees.
Since the eye does not normaly rotate about the line of sight more then about 9 degrees there is

usually no need to perform the auto-corralation past this range, because increasing the range
increases the cpu load uneccesaraly. There are some situations in wich this range needs to be
increased, such as when the entire head is rotated. Depending upon the power of your computer,
you may need to reduce the resolution of the auto-corrlation via: torsion_ResolutionDegrees.

See also:
torsion_ResolutionDegrees

VPX_SendCommand(“torsion_MeasureDegrees 9.0”);

14.17.7 Adjust Torsion Measurement Resolution
GUI: -none-

CLP Command: torsion_ResolutionDegrees FloatDegrees
FloatDegrees: floating point value between: 0.20 to 360.0

SDK Function: -none-

Default 0.5

Adjusts the default torsion measurement resolution.
The default is 0.5.
This minimum value is 0.20.
To limit CPU load, vary this inversely with Torsion_MeasureDegrees.
See for further discussion:
torsion_MeasureDegrees

VPX_SendCommand(“torsion_ResolutionDegrees 0.80”);

Page 139

14.17.8 Set Autocorrelation Template
GUI: Torsion window, Set Template button

CLP Command: torsion_SetTemplate

SDK Function: -none-

Sets a new autocorrelation template.
VPX_SendCommand(“torsion_SetTemplate”);

14.18 Interface settings commands

14.18.1 Turn Cursor Control On / Off
GUI: Interface > CursorControl > Eye Moves Mouse ^E

CLP Command: cursor_Control BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_CursorControl (bool tf);

Default: Off

Turns Cursor Control feature on or off.
VPX_SendCommand(“Cursor_Control On”);

14.18.2 Use Fixation to Issue Button Click
GUI: Interface > CursorControl > Fixation Clicks Buttons ^C

CLP Command: cursor_DwellClick BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Turns on or off dwell time issues mouse click.
VPX_SendCommand(“cursor_DwellClick On”);

Page 140

14.18.3 Specify Fixation Time to Issue Button Click
GUI: Controls window, DataCriteria tab, Mouse Click if Fixated slider

CLP Command: cursor_DwellSeconds FloatValue
FloatValue: From 0.00 to 9.00. Sets the amount of time until
mouse click is issued due to fixation.

SDK Function: -none-

Specifies the dwell time in seconds before a mouse click is issued.
VPX_SendCommand(“cursor_DwellSeconds 2.5”);

14.18.4 Use Blinks to Issue Button Click
GUI: Interface > Cursor Control > Blinks Click Buttons (toggle)

CLP Command: cursorBlinkClick BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Blinks will stimulate mouse clicks with this option enabled.
VPX_SendCommand(“cursorBlinkClick On”);

14.19 RemoteLink & SerialPort controls

14.19.1 Connect / Disconnect Serial Port
GUI: Interface > Serial Port > Connect

CLP Command: serialPortConnect BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Connects and disconnects to the serial port. If disconnected, ViewPoint will not be able to receive
a subsequent connect instruction via the serial port.

VPX_SendCommand(“serialPortConnect On”);

Page 141

14.19.2 Specify Serial Data to Send
GUI: Interface > Serial Port > Nothing, Stream, Test, Events, SinglePacket

CLP Command: serialPortSend Nothing, Stream, Test, Events, SinglePacket

SDK Function: -none-

Specifies what type of serial data to send.
VPX_SendCommand(“serialPortSend Events”);

14.19.3 Send Serial Port Ping
GUI: Interface > Serial Port > Send Ping alt + shift + P

CLP Command: serialPortPing

SDK Function: -none-

Sends a PING packet out over the serial connection. The RemoteLink program (or your program)
is expected to reply with a PONG packet. When a PONG packet is received, the round trip time is
reported.

VPX_SendCommand(“serialPortPing”);

14.20 HeadTracking commands

14.20.1 Connect / Disconnect Head Tracker Interface
GUI: HeadTrack > Connect

CLP Command: headTrackerConnect BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Connects or disconnects the head tracker interface.
See also:
dataFile_AsynchHeadData

VPX_SendCommand(“headTrackerConnect On”);

Page 142

14.20.2 Specify whether to use local or global origin
GUI: HeadTrack > Use Local Origin

CLP Command: headTracker_useLocalOrigin BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Specifies whether the head sensor position and angle data should be relative to the transmitter, or
relative to a local origin set by other commands.

See also:
headTracker_setLocalOrigin
headTracker_resetLocalOrigin

VPX_SendCommand(“headTracker_useLocalOrigin On”);

14.20.3 Reset Origin for the Head Sensor
GUI: HeadTrack > Reset Local Origin

CLP Command: headTracker_resetLocalOrigin

SDK Function: -none-

Sets the current location of the head sensor as the local origin (for the six degree of freedom,
position and angle). All subsequent position and angle data are relative to this new origin.

VPX_SendCommand(“headTracker_resetLocalOrigin”);

14.20.4 Set Position and Angle Origins
Control or Menu: -none-

CLP Command: headTracker_setLocalOrigin coordinatesAndAngleValues
coordinatesAndAngleValues : x y z roll pitch yaw

SDK Function: -none-

Sets the local origin (position and angle). All subsequent position and angle data are relative to this
new origin.

VPX_headtracker_setLocalOrigin

Page 143

14.20.5 Specify the Vector between Head Sensor and the Eyeball.
Control or Menu: -none-

CLP Command: headTracker_eyeOffset Coordinates
Coordinates: x y z

SDK Function: -none-

Specifies the vector offset between the head sensor and the eyeball. This information is used by
ViewPoint for correctly displaying the intercept point of the primary axis of the eye when the
headspace window is enabled.

VPX_SendCommand(“headTracker_eyeOffset 0.7 0.5 0.3”);

14.20.6 Turn CRT pulse synchronization On / Off
GUI: HeadTrack > CRT Sync > * Off, 50-72 Hz, 73-144 Hz

CLP Command: headTracker_CRT_sync Off, Low, High

SDK Function: -none-

CRT monitor emits varying magnetic fields that cause errors with magnetic trackers. You can
compensate for this by synchronizing the FOB to the monitor using the CRT SYNC Pickup. Low
50- 72 Hz and high is 73-144 Hz.

VPX_SendCommand(“headTracker_CRT_sync Low”);

14.21 Binocular commands

14.21.1 Turn Binocular Mode On / Off
GUI: Binocular > Binocular mode (toggle)

CLP Command: binocular_Mode BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: -none-

Default: Off

Turns binocular operation mode on or off. When On, the data file will automatically include the
data from Eye_B and this data will be available in real-time via the SDK.

VPX_SendCommand(“Binocular_Mode On”);

Page 144

14.21.2 Specifies Binocular Averaging
GUI: Binocular >

 Show both eye positions
 Show average Y-gaze positions
 Show average of eye positions

CLP Command: binocular_Averaging averageOption

averageOption : Off, only_Y, both_XY
SDK Function: -none-

Specifies whether to use binocular averaging and which type.
VPX_SendCommand(“binocular_Averaging both_XY ”);

14.22 File Related

14.22.1 Launch ViewPoint with Command Line Options
GUI: -none-

CLP Command: launchApp applicationName argumentsToApp
applicationName: The name of the application to launch
argumentsToApp: command line arguments may be flags,
input/output file names, etx.

SDK Function: VPX_LaunchApp(applicationName, argsToApp);

A general purpose command to launch an application and to provide it with optional command line
arguments.

Note: Must use full path for file names if they are not in the default location for the application.
Special: This command will enable playing stimulus movies.
WARNING: The CLP strings are parsed by the ViewPoint application, therefore you cannot use this

CLP string to launch the ViewPoint application itself, instead use:
VPX_LaunchApp(“ViewPoint.exe”,””);

See also:
VPX_QuitViewPoint();

launchApp DataMarker.exe
launchApp “VP_MoviePlayer.exe” “C:/ARI/Movies/m 1.mov”
VPX_SendCommand (“launchApp VP_MoviePlayer.exe \“C:/ARI/Movies/m 6.mov\” “);
VPX_LaunchApp(“ViewPoint.exe”, “ “); //
VPX_SendCommand (“launchApp ViewPoint.exe”); // PARSE ERROR IF VP NOT RUNNING

Page 145

14.22.2 Specify Default ViewPoint Folder path
GUI: -none-

CLP Command: setPath pathID pathString
pathID: IMAGES: DATA: SETTINGS: SOUNDS: DOCUMENTATION:
pathString : full path string or keyterm: DEFAULT_PATH

SDK Function: -none-

Specifies the current default folder path for important ViewPoint directories.
CAUTION: the current version requires that (a) only forward slashes (/) be used, and (b) a final

forward slash be used; otherwise bad things may happen.
The special keyTerm DEFAULT_PATH may be used to reset the path to the original ViewPoint

default path string.
The key term IMAGES: must include the colon at the end.
See also:
PTCHAR VPX_GetViewPointHomeFolder(PTCHAR pathString);

setPath IMAGES: DEFAULT_PATH
setPath IMAGES: "C:/ARI/Global/Images/"

Page 146

14.23 FKey

14.23.1 Associate CLP Commands with FKeys
GUI: -none-

CLP Command: Fkey_cmd fKeyNumber commandString

fKeyNumber : integer in { 1 to 12 }
commandString : any valid command

SDK Function: -none-

Allows CLP commands to be associated with FKeys. It is a very useful to customize the Fkeys for
your needs.

These fKey associations can be viewed in the Info panel: menu Help > Info > ShortCuts tab.
Note: do not put the command string in quotes; all text after the number is included in the

command string including leading spaces and tabs, UNLESS the string contains a semicolon,
which has higher priority than the Fkey_cmd command does, so anything after the semicolon
will be processed independently after the Fkey_cmd command is processed. Important: this is
subject to change.

Restore defaults with: fkey_default
VPX_SendCommand(“fkey_cmd 12 dataFile_NewUnique”);
VPX_SendCommand(“fkey_cmd 11 stimulus_playSoundFile \"No Way .wav\" ”);

14.24 TTL

14.24.1 Associate CLP Commands with TTL Voltage Changes
GUI: -none-

CLP Command: ttl_cmd signedChannel commandString

signedChannel : +/- just before an integer in { 0 to 7 }
commandString : any valid command

SDK Function: -none-

Allows CLP commands to be associated with TTL voltage changes, high or low.
These associations can be viewed in the Info panel: menu Help > Info > TTL CMDS tab.
Restore defaults with: ttl_default
Requires the TTL option.
VPX_SendCommand(“ttl_cmd +0 dataFile_Pause”);
VPX_SendCommand(“ttl_cmd -0 dataFile_Resume”);
VPX_SendCommand(“ttl_cmd +1 dataFile_NewUnique”);
VPX_SendCommand(“ttl_cmd -1 historyReport \"TTL ch#1 LO\" ”);
VPX_SendCommand(“ttl_cmd +2 dataFile_InsertMarker 2”);

Page 147

14.24.2 Set TTL Output Voltages
GUI: -none-

CLP Command: ttl_out signedChannel

signedChannel : +/- just before an integer in { 0 to 7 }
SDK Function: -none-

Provides a mechanism to easily set the TTL output voltages.
There must be no space between the sign and the number.
Requires the TTL option.
VPX_SendCommand(“ttl_out -0”); // set TTL channel 0 LO
VPX_SendCommand(“ttl_out +7”); // set TTL channel 7 HI

14.24.3 Simulate Change in TTL Input
GUI: -none-

CLP Command: ttl_simulate signedChannel
signedChannel : +/- just before an integer in { 0 to 7 }

SDK Function: -none-

A change in TTL input can be simulated to the software to aid in development and debugging.
Does not require the TTL option.
VPX_SendCommand(“ttl_simulate +0”); // simulate TTL channel 0 HI event

Page 148

14.24.4 Set TTL Output to Indicate Data Quality Codes
GUI: -none-

CLP Command: ttl_out_quality channel levelString
channel : integer in { 0 to 7 }
levelString : OFF, or any of VPX_QUALITY_*
VPX_QUALITY_PupilScanFailed
VPX_QUALITY_PupilFitFailed
VPX_QUALITY_PupilCriteriaFailed
VPX_QUALITY_PupilFallBack
VPX_QUALITY_PupilOnlyIsGood
VPX_QUALITY_GlintIsGood

SDK Function: -none-

A ttl output channel can be specified to indicate when the data quality value is greater than or
equal to (>=) the quality critereon level.

The level strings are identical to the VPX_QUALITY_* constants defined in the VPX.h file. The
best quality is level == QUALITY_GlintIsGood, poorer quality raises the quality level.
Setting the quality criterion to x will cause the TTL channel to always be high, because the data
quality value is always greater than or equal to this.

See also:
VPX_GetQuality
verbose +ttl_out

VPX_SendCommand(“ttl_out_quality 0 VPX_QUALITY_PupilFallBack”);

Page 149

14.25 Misc

14.25.1 Specify Verbose Information to Send to History Window
GUI: -none-

CLP Command: verbose +/-activityType
activityType : ttl_out ttl_cmd calibration settings

SDK Function: -none-

CURRENTLY BEING EXPANDED
Allows fine control over the type of verbose information sent to the History window.
The reports are turned on or off by preceding the keyTerm with a plus (+) or minus(-), respectively.

There can be no space between the sign and the keyTerm.
This is used for debugging and the details of what is reported may change without notice.
The following arguments can be used to turn reporting on or off.

+setting
+parsing
+ttl_out
+ttl_cmd
+frameGrabber
+videoTiming
+serialSend
+serialReceive;
+insertMark
+insertString
+insertUserTag
+calibration
+headTracker
+nameList

VPX_SendCommand (“verbose +ttl_cmd +ttl_out –calibration -settings”);

Page 150

14.25.2 Update Eye Data on Request
GUI: Alt-Shift-U

CLP Command: updateData

SDK Function: -none-

Some programs want as much CPU time as they can get, so they would like to have ViewPoint
video image processing turned off until fresh data is needed. We have now added the capability
to update eye data based on the most recent video image in memory (this memory is constantly
being updated via direct memory access, DMA, by the video capture board).

Note: sending an updateData command while NOT frozen may cause a glitch in the data timing.
VPX_SendCommand (“updateData”);

14.25.3 Set Status Window Update Rate for FPS Field
GUI: -none-

CLP Command: fpsUpdate nth_Interupt
nth_Interupt : integer

SDK Function: -none-

Added control for rate of update of the FPS (frames per second) value in the Status window. The
argument may be any positive number. An argument of 1 would cause the fps calculation to be
updated every video interupt (frame or field), 2 would be every 2nd, etc.

VPX_SendCommand (“fpsUpdate 3”);

14.25.4 SDK Debug Mode
GUI: -none-

CLP Command: debugSDK

SDK Function: VPX_DebugSDK(int onOff)

This command will add debuging capability for the dll based sdk.
VPX_DebugSDK(1);

Page 151

14.25.5 Specify ViewPoint Generated Events
GUI: -none-

CLP Command: vpx_event +option -option
option : videoSynch

SDK Function: -none-

This provides a mechanism to control (thin) the number of events that ViewPoint generates. The
command format the keyword vpx_event followed by one or more options that are immediately
preceeded (no spaces) by a + or - character.

Note: unnecessary messages will unnecessarily consume system resources.
See:
VPX_VIDEO_SyncSignal

VPX_DebugSDK(1);

14.25.6 Turn Accelerator Key Functionality On / Off
GUI: -none-

CLP Command: acceleratorKeys BoolValue
BoolValue: Yes, No, True, False, On, Off, 1, 0, Toggle

SDK Function: VPX_AcceleratorKeys (bool tf);

Default: On

RARE
Specifies whether accelerator keys may be used.
VPX_SendCommand(“acceleratorKeys Off”);

14.26 Parser Instructions

14.26.1 Settings File Comment
GUI: -none-

CLP Command: COMMENT

//

SDK Function: -none-

For use in a settings file. Use either the key word COMMENT or the double forward slashes (//) to
tell the parser to ignore this line.

//

Page 152

14.26.2 End of Settings File Command
GUI: -none-

CLP Command: END

SDK Function: -none-

The command END should be placed by itself on the final line of a settings file. This provides a
way to verify that all the settings command lines were read. ViewPoint reports "Settings read
successfully" when the END command is reached.

END

Page 153

Chapter 15 Software Developers Kit
(SDK)

15.1 General
A third party application (for example, your application) may interact with the ViewPoint

EyeTracker® by compiling with the VPX_InterApp.lib file, a library file. At run time your program
will dynamically link to the VPX_InterApp.DLL, a dynamic-link library file. All of the ViewPoint inter-
application communications constants, data types, and functions begin with the prefix VPX_ and
are specified in the VPX.h file.

Your application may call the VPX_ routines VPX_LaunchApp(“ViewPoint.ext”, “ ”)

and VPX_QuitViewPoint() to control when the ViewPoint EyeTracker®, application is running.
If the remote application will provide its own control settings to ViewPoint, then it may be
desirable to launch only the EyeCamera window, by calling:

VPX_LaunchApp(“ViewPoint.ext”, “ ”)
VPX_LaunchApp(“ViewPoint.ext”, “ -hideMain –freeEyeCamera ”)

The command line argument –minimized allows access to the main ViewPoint program

window via the minimized icon, -hideMain makes the main window of ViewPoint completely
inaccessible. –freeEyeCamera launches ViewPoint with the eye camera window as a free floating
window.

Note: currently, if launched minimized, the splash window is not presented.
Your application may access ViewPoint data at any time. It should be noted that employing

a tight polling loop is a poor programming practice, because it unnecessarily consumes computer
CPU time. If only occasional updates are required, a timer would probably be the preferred method
(see MSWindows SetTimer function). If your application needs to know immediately every time the
data values are updated, then it should register to receive notifications of fresh data.

15.2 Registering to Receive Notifications
Registering to receive notifications of fresh data is a multi-step process:
Obtain the unique message identifier used by ViewPoint for inter-process communication:

const static UINT wm_VPX_message = RegisterWindowMessage(VPX_MESSAGE).
The window(s) that wish to receive notification must register to receive it by calling:

VPX_InsertMessageRequest(m_hWnd, wm_VPX_message).

Page 154

More than one window in an application may request notifications, however no window

should make more than one request.
Your program must listen for the notifications. This may be done in several ways. If you are

using MFC message maps, then you should add a mapping, e.g.:
ON_REGISTERED_MESSAGE(wm_VPX_message, OnVPX_message).
If you are using Win32, then you will want to listen for the wm_VPX_message notification just

as you would listen for a WM_PAINT message.
When a wm_VPX_message is received, your message handling routine should determine the

type of the notification, as follows:
WORD notificationCode = HIWORD (wParam).
This notificationCode may then be used in a switch statement that uses case constants

defined in the VPX.h file. Among others, these include: VPX_DAT_FRESH, VPX_ROI_CHANGE, and
notifications relating to the presentation of calibration point stimuli. Refer to Table 40 for a complete
list.

IMPORTANT: A finite number of message windows may register a
VPX_InsertMessageRequest at one time (currently ten), after which notification requests will
be refused. You application should always make sure that each requesting window
successfully removes its request for notification before the window is destroyed or before
the program terminates, by calling: VPX_RemoveMessageRequest(m_hWnd).

The ViewPoint EyeTracker® Status window contains the field DLL sharing. This shows the
number of windows that are currently registered to receive notifications. You may monitor this
value during program development to make sure that terminating your application also decrements
this value. If you find that all requests are used up, the only way to reset this list is to terminate
every application that dynamically links to the VPX_InterApp.DLL.

Note 1: The VPX_Set_x routines work by directly sending values to the ViewPoint EyeTracker®.
Any commands sent before ViewPoint is launched, will have no effect on the initial startup
values of ViewPoint.
Note 2: ViewPoint does not send out notifications when control values are changed, so
unless the remote application explicitly sets the ViewPoint values, the remote applications
control values (e.g. of sliders) will not accurately reflect the ViewPoint EyeTracker®
application control values.

We encourage users and third party developers to work with us in developing this interface.
We take suggestions and usability reports very seriously.

Page 155

15.3 Example SDK Code
Your application must first register with the VPX_InterApp.lib by doing the following for

each window procedure (WinProc) that desires notification:

if (uniqueMessageId == 0) {
 uniqueMessageId = RegisterWindowMessage(VPX_MESSAGE);
 VPX_InsertMessageRequest(hWnd, uniqueMessageId);
}

After registering, the WinProc should listen for notifications:

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

WORD notificationCode = HIWORD(wParam) ;
 if (message == uniqueMessageId) {
 switch (notificationCode)
 {

case VPX_DAT_FRESH :
 {

EyeType eye = LOWORD (wParam);
 showFreshData(eye graphicsWindow);

} break;

15.4 Data Quality Codes
Because the data can now be from multiple sources, and because in data files it is often

desirable to store all data on a single record line, the concept of a data reject record is obsolete.
Instead, data quality codes are provided for each source.

A VPX_DAT_FRESH is sent and the SDK application is responsible for obtaining the
quality code and making a decision as to what levels of quality are appropriate for various
situations. We highly recommend that you use the constants provided, rather than testing the
integer value, as these are not guaranteed to remain unchanged. Nevertheless, the hierarchical
relationships are expected to remain intact. For example:
VPX_GetDataQuality2(eye, &quality);
switch (quality)
{

case VPX_QUALITY_PupilScanFailed: showGaze(false); break;
 case VPX_QUALITY_PupilFitFailed: showGaze(false); break;
 case VPX_QUALITY_PupilCriteriaFailed: showGaze(false); break;
 case VPX_QUALITY_PupilFallBack: showGaze(true); break;
 case VPX_QUALITY_PupilOnlyIsGood: showGaze(true); break;
 case VPX_QUALITY_GlintIsGood: showGaze(true); break;
}

Data records are constantly stored, because the data quality may vary with different sources.
For example, data may be good from one eye, and a wink occurred in the other eye, or both eyes
are closed, but the head tracker data is still good. Data sections now contain individual quality
columns, as needed.

Page 156

15.5 Sending CLP Commands with the SDK
The ViewPoint EyeTracker® software developers kit (SDK) provides a routine that allows

sending Command Line Parser (CLP) strings directly to the ViewPoint EyeTracker®. This means
that the same command strings that are loaded from Settings Files or that are sent in serial port
packets, can be issued via the DLL. An important benefit is that this allows passing textStrings and
fileNames.
result = VPX_SendCommand(TCHAR *cmd);
VPX_SendCommand("dataFile_NewName rabbitPictureData");
VPX_SendCommand("dataFile_InsertString Showing Picture of a Rabbit");
VPX_SendCommand("settingsFile_Load RabbitPictureROI.txt");

The function returns an integer result value that provides feedback about the success or
problems encountered. See VPX.h for a list of return codes.

For a matrix comparing CLP commands, SDK functions, window buttons, and menu items,
refer to the Command and Control Matrix contained in the SDK folder.

15.6 High Precision Timing
High Precision timing (HPT) with resolution in the order of 0.0000025, i.e., 2.5E-6 or 2.5

microseconds, is available via the SDK function call:
#define SINCE_PRECISE_INIT_TIME ((double*)NULL)
#define RESET_PRECISE_HOLD_TIME 1
#define LEAVE_PRECISE_HOLD_TIME 0

double seconds = VPX_GetPrecisionDeltaTime(double *holdTime, BOOL resetHoldTime);

The function returns the difference between the holdTime and the current time. When NULL
is passed to VPX_GetPrecisionDeltaTime it returns the time since the DLL was first initialized,
which is when it was first called. If resetHoldTime is true, the variable holdTime will be set to the
current time when the function returns.

15.7 DLL Version Checking
All applications using the ViewPoint SDK should include the following check for a possible

mismatch between the version of the DLL (loaded at runtime) and the version of the SDK library
(prototypes and constants) that was compiled into the application.
BOOL versionMismatch = VPX_VersionMismatch (VPX_SDK_VERSION);

double dllVersion = VPX_GetDLLVersion();
if (VPX_SDK_VERSION != dllVersion) doSomething();

15.8 SDK Access Functions
There are many functions provided to access ViewPoint data and the current state of the

Page 157

ViewPoint Program. These are generally referred to as the Get commands and Set commands.
15.8.1 Get Eye Data Access

int ok = VPX_GetGazePoint (VPX_RealPoint* gazePoint)

int ok = VPX_GetGazePoint2 (VPX_EyeType eye, VPX_RealPoint* gazePoint)

int ok = VPX_GetGazePointSmoothed2(VPX_EyeType eye, VPX_RealPoint* gazePnt);

Retrieves the calculated position of gaze, for either Eye_A or Eye_B if binocular mode is on.
Monocular ViewPoint uses Eye_A by default.
Returns 1 if valid VPX_EyeType, 0 otherwise.
See also:
VPX_GetPupilPoint2
VPX_GetGlintPoint2

VPX_RealPoint rp ;
VPX_GetGazePoint2(EYE_A, &rp);
printf(“ X: %g , Y: %g “, rp.x, rp.y);

int VPX_GetGazeAngle2(VPX_EyeType eye, VPX_RealPoint *gp)

int VPX_GetGazeAngleSmoothed2(VPX_EyeType eye, VPX_RealPoint *gp)

Retrieves the calculated angle of gaze, for either Eye_A, or Eye_B if binocular mode is on.
Monocular ViewPoint uses Eye_A by default.

Note: The angles are from trigonometric calculations based on the values that the user has
measured and set for the window size (horizontal & vertical) and the viewing distance. This is
NOT for use with the head tracker option.

 See also:
VPX_GetMeasuredScreenSize
VPX_GetMeasuredViewingDistance
VPX_GetHeadPositionAngle

VPX_RealPoint rp ;
VPX_GetGazeAngleSmoothed2(EYE_A, &rp);
printf(“ X: %g , Y: %g “, rp.x, rp.y);

Page 158

int ok = VPX_GetFixationSeconds (double* seconds)

int ok = VPX_GetFixationSeconds2 (VPX_EyeType eye, double* seconds)

Retrieves the number of seconds that the total velocity has been below the VelocityCriterion for
either Eye_A or Eye_B if binocular mode is on. Monocular ViewPoint uses Eye_A by default. .

A zero value indicates a saccade is occurring.
Returns 1 if valid VPX_EyeType, 0 otherwise.
This function replaces the less precise function: VPX_GetFixationDuration(DWORD);
See also:
VPX_GetTotalVelocity

double seconds, milliseconds, microseconds ;
VPX_GetFixationSeconds2 (EYE_A, &seconds);
milliseconds = 1000.0 * seconds ;
microseconds = 1000.0 * milliseconds ;

VPX_GetTotalVelocity (double *velocity);

VPX_GetTotalVelocity2 (VPX_EyeType eye, double* velocity);

Retrieves the total velocity of movement in the (x,y) plane. That is, the first derivative of the
(smoothed) position of gaze for either Eye_A, or Eye_B if binocular mode is on. Monocular
ViewPoint uses Eye_A by default.

Returns 1 if valid VPX_EyeType, 0 otherwise.
See also:
VPX_GetComponentVelocity
VPX_GetFixationSeconds

VPX_RealType velocity ;
VPX_ VPX_GetTotalVelocity2 (EYE_A, &velocity);
printf(“ Velocity: %g “, velocity);

Page 159

VPX_GetComponentVelocity(VPX_RealPoint *velocityComponents);

VPX_GetComponentVelocity2(VPX_EyeType eye, VPX_RealPoint *velocityComponents);

Retrieves the x- and y-components of the eye movement velocity for either Eye_A, or Eye_B if
binocular mode is on. Monocular ViewPoint uses Eye_A by default.

Returns 1 if valid VPX_EyeType, 0 otherwise.
See also:
VPX_ GetTotalVelocity

VPX_RealPoint cv ;
VPX_GetComponentVelocity2(Eye_A, &cv);
printf(“ dx/dt: %g , dy/dt: %g “, cv.x, cv.y);

VPX_GetPupilSize (VPX_RealPoint *dims)

VPX_GetPupilSize2 (VPX_EyeType eye, VPX_RealPoint *dims)

Retrieves the raw size of the oval fit to the pupil for either Eye_A or Eye_B if binocular mode is on.
Monocular ViewPoint uses Eye_A by default.

The x- y-size values are normalized with respect to the EyeSpace dimensions that have a 4:3
aspect, so the x- and y-values are anisotropic. To obtain the aspect ratio of the pupil, rescale: (
aspect = ps.x / (ps.y * 0.75)

Returns 1 if valid VPX_EyeType, 0 otherwise.
See also:
VPX_GetPupilAspectRatio
VPX_GetPupilOvalRect

VPX_RealPoint pupilDimensions ;
double pupilAspectRatioCalculated, pupilAspectRatioRetrieved ;
VPX_GetPupilSize(&pupilDimensions);
// NOTE: dimensions are normalized but incommensurate
pupilAspectRatioCalculated = pupilDimensions.x / (pupilDimensions.y * 0.75);
VPX_GetPupilAspectRatio(&pupilAspectRatioRetrieved);
difference = pupilAspectRatioCalculated - pupilAspectRatioRetrieved ;
printf(“pupilAspectRatio %g - %g = %g”,
 pupilAspectRatioCalculated, pupilAspectRatioRetrieved, difference);

Page 160

int VPX_GetPupilAspectRatio(double *ar);

int VPX_GetPupilAspectRatio2(VPX_EyeType eye, double *ar);

Retrieves the dimensionless value of pupil aspect ratio. This ratio value is independent of the
EyeCamera window shape. A circular pupil will produce a value of 1.0

Retrieves the pupil aspect ratio.
See also:
VPX_GetPupilSize
VPX_GetPupilOvalRect

See example under: VPX_GetPupilSize

VPX_GetPupilOvalRect (VPX_RealRect *ovalRect)

VPX_GetPupilOvalRect2 (VPX_EyeType eye, VPX_RealRect *ovalRect)

Retrieves the rectangle in RAW EyeSpace coordinates (normalized with respect to the EyeCamera
window) that specifies the oval (ellipse) fit to the pupil.

Separate rectangles are available for Eye_A, or Eye_B if binocular mode is on. Monocular
ViewPoint uses Eye_A by default.

See also:
VPX_GetPupilSize
VPX_RealRect2WindowRECT
VPX_GetPupilAspectRatio
VPX_RealRect2WindowRECT

// Remote painting of the pupil size and location.
HDC hDC = GetDC(hWnd);
RECT wr, scaledPupilRECT ;
VPX_RealRect pr ;
VPX_GetPupilOvalRect(&pr);
GetClientRect(hWnd, &cr);
VPX_RealRect2WindowRECT(pr, cr, &scaledPupilRECT);
Rectangle(hDC, scaledPupilRECT);
ReleaseDC(hWnd, hDC);

Page 161

VPX_GetPupilPoint (VPX_RealPoint *rawPupilLoc)

VPX_GetPupilPoint2 (VPX_EyeType eye, VPX_RealPoint *rawPupilLoc

Retrieves the raw normalized (x,y) location of the center of the pupil (center of the oval fit to the
pupil) in the EyeSpace, for either Eye_A or Eye_B if binocular mode is on. Monocular ViewPoint
uses Eye_A by default. (c.f. VPX_GetPupilCentroid2)

VPX_GetPupilPoint2(EYE_A, &rawPupilLocation);

VPX_GetGlintPoint (VPX_RealPoint *rawGlintLoc)

VPX_GetGlintPoint2 (VPX_EyeType eye, VPX_RealPoint *rawGlintLoc)

Retrieves the raw normalized (x,y) location of the center of the glint (center of the oval fit to the
glint) in the EyeSpace, for either Eye_A or Eye_B if binocular mode is on. Monocular ViewPoint
uses Eye_A by default. (c.f. VPX_GetGlintCentroid2)

VPX_GetGlintPoint2(EYE_A, &rawGlintLocation);

int VPX_GetDiffVector(VPX_RealPoint *dv)

int VPX_GetDiffVector2 (VPX_EyeType eye, VPX_RealPoint *dv)

Retrieves the raw normalized vector difference between the centers of the pupil and the glint in
the EyeSpace, for either Eye_A or Eye_B if binocular mode is on.

Monocular ViewPoint uses Eye_A by default.

VPX_GetDiffVector2(EYE_A, &differenceVector);

VPX_GetPupilCentroid2 (VPX_EyeType eye, VPX_RealPoint *centroid

Provides raw data access to the normalized centroid of the pupil threshold scan in the EyeSpace
window, regardless of what subsequent processing options are selected. (c.f.
VPX_GetPupilPoint2)

VPX_GetPupilCentroid2(EYE_A, ¢roid);

Page 162

VPX_GetGlintCentroid2 (VPX_EyeType eye, VPX_RealPoint *gc)

Provides raw data access to the normalized centroid of the glint threshold scan in the EyeSpace
window, regardless of what subsequent processing options are selected. (c.f.
VPX_GetGlintPoint2)

VPX_GetGlintCentroid2 (EYE_A, &gc);

VPX_GetTorsion(double *degrees)

VPX_GetTorsion2 (VPX_EyeType eye, double *degrees)

Retrieves torsion in degrees for either Eye_A or Eye_B if binocularmode is on. Monocular
ViewPoint uses Eye_A by default. The ViewPoint torsion measurement must be turned on, it is
off by default to save processing time.

VPX_GetTorsion2 (EYE_A, °rees);

VPX_GetDataQuality2 (VPX_EyeType eye, int *quality)

Retrieves the quality code for the eye data.
See VPX.h for a list of data quality constants.

VPX_GetDataQuality2 (EYE_A, &quality);

Page 163

15.8.2 Get Time Information

VPX_GetDataTime2 (VPX_EyeType eye, double *dataTime)

Retrieves the high precision time, in seconds, that the video frame became available for the current
data point, before video image processing and other calculations were done. This was modified
in version 2.8.2.36, Previously this obtained the time that the data was stored to the DLL and a
VPX_DAT_FRESH event was issued. Now this function obtains the video sych time that better
reflects the actual time that the image of the eye became available, and is not affected by
variance in image processing time. The data storage time can now be obtained via
VPX_GetStoreTime2.

Note: this modification effects VPX_GetDataDeltaTime2 such that its variance should significantly
reduced.

See also:
VPX_GetStoreTime2

VPX_GetDataTime2 (EYE_A, &dataTime);

VPX_GetDataDeltaTime2 (VPX_EyeType eye, double* deltaTime)

Retrieves the high precision time interval, in seconds between the last two dataTime values.

VPX_GetDataDeltaTime2 (EYE_A, &deltaTime);

VPX_GetStoreTime2 (VPX_EyeType eye, double* storeTime)

Retrieves the high precision timestamp in seconds of the last time the data was stored to the DLL
and a VPX_DAT_FRESH event was issued. Use VPX_GetDataTime for eye movement times;
use this to find out when the data was available in the DLL, e.g., to calculate the delay in inter-
application notification event handling.

VPX_ GetStoreTime2 (EYE_A, &deltaTime);

Page 164

15.8.3 Get Motor Data

VPX_GetHeadPositionAngle (VPX_PositionAngle *hpa)

Retrieves head position and angle data. The PositionAngle structure is defined in VPX.h.
** available with head tracker option only **
NOTE: Subject to change.

VPX_PositionAngle hpa;
VPX_GetHeadPositionAngle (&headTrackerSixDOF);

POINT VPX_GetCursorPosition();

Returns the integer screen coordinates of the mouse cursor.
See also:
cursor_Control
VPX_GetMeasuredScreenSize

//Convert from pixel position to normalized screen position.
POINT pixelCursorPosition = VPX_GetCursorPosition();
VPX_RealPoint screenSize, normalizeCursorPosition;
VPX_GetMeasuredScreenSize (&screenSize);
normalizeCursorPosition.x = (float) pixelCursorPosition.x / screenSize.x ;
normalizeCursorPosition.y = (float) pixelCursorPosition.y / screenSize.y ;

Page 165

15.8.4 Get ViewPoint Status

int VPX_GetStatus(VPX_StatusItem);

This provides a simple way to determine the current status or state of various ViewPoint
operations.

Note: The return value may need to be type cast for correct interpretation.
See also:
status_Dump
VPX_STATUS_CHANGE

int running = VPX_GetStatus(VPX_STATUS_ViewPointIsRunning);
// regardless of whether ViewPoint or RemoteLink is the local distributor.
int frozen = VPX_GetStatus(VPX_STATUS_VideoIsFrozen);
int open = VPX_GetStatus(VPX_STATUS_DataFileIsOpen);
int paused = VPX_GetStatus(VPX_STATUS_DataFileIsPaused);
int thresh = VPX_GetStatus(VPX_STATUS_AutoThresholdInProgress);
int calib = VPX_GetStatus(VPX_STATUS_CalibrationInProgress);
int binoc = VPX_GetStatus(VPX_STATUS_BinocularModeActive);
int scene = VPX_GetStatus(VPX_STATUS_SceneVideoActive);
char shape = (char)VPX_GetStatus(VPX_STATUS_StimulusImageShape);
// returns 'I'=isotropic stretch, 'C'=centered, 'F'=fit to window, 'A'=actual
Int dllDataSource = VPX_GetStatus(VPX_STATUS_DistributorAttached);
// returns: 0=VPX_Distributor_None, 1=VPX_Distributor_IsViewPoint, or
// 2=VPX_Distributor_IsRemoteLink

PTCHAR VPX_GetViewPointHomeFolder(PTCHAR pathString);

Concatenates the full path to the ViewPoint folder onto the end of the provided string.
Note: this is not a copy operation, i.e., it does not clear any existing contents of the provided string.

To effectively obtain a copy operation, make sure an empty string is provided.

TCSTR pictureFile = TEXT("") ; // clear VERY IMPORTANT TO DO
VPX_GetViewPointHomeFolder(pictureFile); // adds: ...ViewPoint/"
lstrcat(pictureFile, IMAGE_FOLDER); // adds "/Images/"
lstrcat(pictureFile, myPicture.bmp); // adds "myPicture.bmp"

Page 166

15.8.5 Get ViewPoint Stimulus Window

HWND VPX_GetViewPointStimulusWindow(void);

HWND VPX_GetViewPointGazeSpaceWindow(void);

Allows a layered program to access to ViewPoint's Stimulus_Window by way of the window
handle.

Note: this will work only if the the local data distributor application is ViewPoint; it will not work if the
local distributor application is RemoteLink.

See also:
VPX_SetEyeImageWindow
VPX_SetExternalStimulusWindow
VPX_GetStatus(VPX_STATUS_DistributorAttached);

int dllSource = VPX_GetStatus(VPX_STATUS_DistributorAttached);
if (VPX_Distributor_IsViewPoint == dllSource) {
 for (int ix=0; ix<2; ix++)
 {

HWND hWnd ;
 if (ix == 0) hWnd = VPX_GetViewPointStimulusWindow();
 else hWnd = VPX_GetViewPointGazeSpaceWindow();
 if (!hWnd) continue ;
 CWnd* w = FromHandle(hWnd);
 CDC* d = w->GetDC();
 RECT r ;
 w->GetClientRect(&r);
 d->Rectangle(r.left+10, r.top+10, r.right-10, r.bottom-10);
 d->MoveTo(r.left, r.bottom); d->LineTo(r.right, r.top);
 r.left = r.top = 25 ;
 d->DrawText("Drawing from\nVPX_mfc_demo",&r,0);
 ReleaseDC(d);
 }
}

Page 167

15.8.6 Get Stimulus Display Geometry

VPX_GetMeasuredViewingDistance(VPX_RealType *vd);

Provides the physical distance (Millimeters) of the subject's eye to the display screen, as specified
by the user in the ViewPoint GeometryGrid dialog.

When the head is free move and a head tracker is used, this value may not be accurate.
See also:
VPX_GetHeadPositionAngle
VPX_GetMeasuredScreenSize

VPX_RealPoint rsc;
VPX_GetMeasuedViewingDistance(&rcs);

int VPX_GetMeasuredScreenSize(VPX_RealPoint *displaySize);

Provides the physical size of the display screen (Millimeters), as calculated from the ViewPoint
GeometryGrid dialog specifications.

See also:
VPX_ GetMeasuredViewingDistance

VPX_RealPoint rp ;
VPX_GetMeasuredScreenSize(&rp);
printf(“Stimulus Display Screen Size is %d X %d”, rp.x, rp.y);

15.8.7 Get ROI

VPX_GetROI_RealRect (int roiN, VPX_RealRect *rr)

where roiN is in { 0 to 99 }

Retrieves the normalized floating point coordinates for the specified region of interest (ROI).

VPX_RealRect rr;
RECT cr;
INT w, h;
GetClientRect(hwnd, &cr); w = cr.right; h=cr.bottom;
for (ix=0; ix<MAX_ROI_BOXES; ix++) {
 VPX_GetROI_RealRect(ix, &rr);
 printf(“ROI %d = (%d,%d)(%d,%d)”,
 (int)(w*rr.left), (int)(h*rr.top), (int)(w*rr.right), (int)(h*rr.bottom));
 }

Page 168

int VPX_ROI_GetHitListLength (VPX_EyeType eye)

The ROI may be overlapped, so a gaze point may be in more than osne ROI. This function
returns a count of the number of ROI the gaze point is in. This is calculated for each eye
since the gaze point may be different for the left and right eyes. If the gaze point is not in any
ROI, a zero value is returned. If the gaze point was in three overlapping ROI, the value three
is returned, etc.

Monocular ViewPoint users should specify Eye_A.
See sample code under: VPX_ROI_GetHitListItem

int numberOfRegionsHit = VPX_ROI_GetHitListLength(EYE_A);

int VPX_ROI_GetHitListItem (EyeType eye , int NthHit)

The ROI may be overlapped, so a gaze point may be in more than one ROI. This function
returns the ROI index number of the Nth ROI that the gaze point is in for either Eye_A, or
Eye_B if binocular mode is on; monocular ViewPoint should specify Eye_A. The NthHit
argument starts at zero. The functions may be called repeatedly to obtain successive ROI
index values until no more ROI are in the hit list. If the NthHit argument is greater than the hit
count, then the function returns the value ROI_NOT_HIT. The test is for values inside the ROI
box values, not resting on the box lines.

Monocular ViewPoint users should specify Eye_A.
See also: VPX_ROI_GetHitListLength

int ix = 0; // range is: 0 to (VPX_ROI_GetHitListLength(EYE_A) – 1)
while(ROI_NOT_HIT != (roiNumber = VPX_ROI_GetHitListItem(EYE_A, ix++)))
 doSomethingWith(roiNumber);

Page 169

int VPX_ROI_MakeHitListString (EyeType eye , int NthHit)

The string lists the ROI that were hit, eg: "2,45,88". If (indicateOverflow == true) then a "+" at
the end of the string will be used to indicates that there were additional roi that could not fit in
the given string.

Makes a string with at most maxStringLength characters. Specifying a maxStringLength of 2
will effectively limit the reported roi to the first. For double digit numbers, prints both digits if
possible, otherwise prints nothing.Does not leave dangling comma separaters.

If there are no roi hit, then the noHitsString is returned, eg: " -None- "
The return value is the length of the string.
Monocular ViewPoint users should specify Eye_A.
See also: VPX_ROI_GetHitListLength

int ix = 0; // range is: 0 to (VPX_ROI_GetHitListLength(EYE_A) – 1)
while(ROI_NOT_HIT != (roiNumber = VPX_ROI_GetHitListItem(EYE_A, ix++)))
 doSomethingWith(roiNumber);

15.8.8 Set Remote EyeImage

int VPX_SetEyeImageWindow(VPX_EyeType eyn, HWND hWnd);

Specifies the window within a layered application that should be used for display of the EyeCamera
image.

See also:
vpx_EyeCameraImageOverlays
VPX_SetEyeImageDisplayRect

HWND hWnd = myEyeWindow ;
VPX_SetEyeImageWindow(EYE_A, hWnd);

Page 170

int VPX_SetEyeImageDisplayRect(VPX_EyeType eyn, RECT displayRect);

Allows optional re-adjustment of the display image offset and size, from the default.NOTE:
320x240 provides optimal performance, other sizes may increase CPU usage.

See also:
VPX_SetEyeImageWindow

RECT displayArea = { 10, 10, 130, 250 } ;
VPX_SetEyeImageDisplayRect(EYE_A, displayArea);

Page 171

15.9 DLL Interface

Table 13: SDK API & Messaging Functions
VPX_InsertMessageRequest (HWND hWnd, UINT msg)

Inserts the specified hWnd into the list of windows that are sent notification messages. E.g.
when fresh data has been put in the DLL shared memory. Refer to Table 40

VPX_RemoveMessageRequest (HWND hWnd)

Removes your application’s request for notification for the specified window.
VPX_GetMessageListLength (int * num)

Returns the number of windows that are registered to receive messages.
VPX_GetMessagePostCount (int * num)

Returns the total number of messages that have been distributed.
int VPX_GetViewPointAppCount(int *apps);

Sets applications to non-zero if ViewPoint is running.
BOOL VPX_VersionMismatch (VPX_SDK_VERSION)

Returns 0 if the program was compiled with the same version of the DLL lib as the DLL lib that
is loaded at run time.

double VPX_GetDLLVersion()

You can obtain the version number of the loaded DLL using this function.
Example:
double dllVersion = VPX_GetDLLVersion();
if (VPX_SDK_VERSION != dllVersion) doSomething();

VPX_STATUS_DistributorAttached

The DLL based SDK gets data from, and sends command strings to, a "distributor" application.
Normally the distributor application is the ViewPoint EyeTracker, but it could be the
RemoteLink application. We now provide a mechanism for determining which, if any, it is.
#define VPX_Distributor_None 0
#define VPX_Distributor_IsViewPoint 1
#define VPX_Distributor_IsRemoteLink 2
#define VPX_DistributorType int

VPX_DistributorType dllDataSource = VPX_GetStatus(
VPX_STATUS_DistributorAttached);

// Note: VPX_STATUS_ViewPointIsRunning returns true if ViewPoint is running either directly or
via RemoteLink.

Page 172

Table 14: SDK Utility Functions
VPX_GetPrecisionDeltaTime (double*, resetHoldTime)

Retrieves the delta time between the holdTime and the current time.
BOOL VPX_IsPrecisionDeltaTimeAvailableQ()

Use this command to determine if precision time is supported. Returns TRUE if the system supports
precision time, otherwise returns false.

RectFrame (HDC hdc, int x1, int y1, int x2, int y2, int t)

Draws two concentric hollow rectangles in the specified window. The inner rectangle is defined by
the specified coordinates. The outer rectangle is larger by parameter t pixels.

EllipseFrame (HDC hdc, int x1, int y1, int x2, int y2, int t)

Draws two concentric hollow ellipses in the specified window. The inner rectangle is defined by the
specified coordinates. The outer rectangle is larger by parameter t pixels.

VPX_WindowRECT2RealRect(RECT nr, RECT clientRect, RealRect * rr);

Takes in integer coordinates for a rectangle within a specified window and returns the normalized
coordinates for that rectangle.

VPX_RealRect2WindowRECT(RealRect rr, RECT clientRect, RECT * scaledRect);

Takes normalized coordinates of a rectangle and returns integer coordinates that have been
scaled for the size of the specified window. For example:

RealRect rr = { 0.1, 0.1, 0.2, 0,2 }; RECT clientWindowRect = { 320, 240 }; RECT
scaledRect ; VPX_RealRect2WindowRECT(rr, clientWindowRect, &scaledRect);

scaledRect will now contain { 32, 24, 64, 48 }
VPX_drawROI (HWND hWnd, int activeRegion)

Draws the activeRegion ROI in red and all of the other ROI in blue, within the specified window.

int VPX_LParam2RectPoint (LPARAM codedLoc, RECT clientRect, POINT *pt);

Used with VPX_CAL_* messages to obtain the location of the calibration point that is encoded in
the message LPARAM. Takes LPARAM and returns integer coordinates of the calibration points
that have been scaled for the size of the specified window. Previously defined in DLL but not
listed in prototypes, because it was under evaluation. Added here in version 2.4.2.0

Page 173

15.10 ViewPoint Events & Notification Messages
15.10.1 General Events

HIWORD(WPARAM) VPX_DAT_FRESH

The data has just been updated, real-time programs should now access
the data that it needs by calling the accessor functions.

LOWORD(WPARAM) The eye the command pertains to: EYE_A, EYE_B
VPX_EyeType eyn = (VPX_EyeType)LOWORD(wparam);
VPX_RealRect gpt;
VPX_GetGazePoint2(eyn, &gpt);

LPARAM Do not use LPARAM.

HIWORD(WPARAM) VPX_ROI_CHANGE

Indicates that a Region Of Interest (ROI) was changed.

LOWORD(WPARAM) RealRect rr ;
RECT cr, dr ;
GetClientRect(hwnd, &cr);
WORD roiIndexNumber = LOWORD(wParam);
VPX_GetROI_RealRect(roiIndexNumber, &rr);
VPX_RealRect2WindowRECT(rr, cr, &dr);
Rectangle(hdc, dr.left, dr.top, dr.right, dr.bottom);

LPARAM Do not use LPARAM.

HIWORD(WPARAM) VPX_STATUS_CHANGE

Indicates that a key ViewPoint status item was changed.
For details, see Section: 15.8.4: Get ViewPoint Status.
VPX_GetStatus

LOWORD(WPARAM) Do not use WPARAM.

LPARAM WORD statusItem = LOWORD(lParam);
WORD statusValue = HIWORD(lParam);
switch (statusItem) {
 case VPX_STATUS_DataFileIsOpen :
 printf(“DataFile is %s”, (statusValue==1)?”Open”:”Closed”);
 break;
…

Page 174

HIWORD(WPARAM) VPX_VIDEO_FrameAvailable

Notifies external (layered) applications that a video frame is available in
ViewPoint memory.

See also:
.

LOWORD(WPARAM) VPX_EyeType eye = LOWORD(wparam); // Usage: if (eye == EYE_A)

LPARAM DWORD notUsed = lparam ; // NOTE: subject to change!

HIWORD(WPARAM) VPX_VIDEO_SyncSignal

This message is sent as soon as the video capture board detects frame-
ready (30 Hz) or field-ready (60 Hz) signal. The user can now tell
when the image became available for processing, before any image
processing has been performed. This better reflects the true time of
the eye movement, and reduces noise in the timing calculation.

See also:
vpx_event +videoSynch
VPX_GetDataTime2

LOWORD(WPARAM) VPX_EyeType eye = LOWORD(wparam); // Usage: if (eye == EYE_A)

LPARAM DWORD deltaMicroSeconds = lparam; // NOTE: subject to change!

15.10.2 Calibration Events
The flow of the calibration events in the autocalibration sequence is as follows:

VPX_CAL_BEGIN
VPX_CAL_WARN

// each calibration point
 VPX_CAL_SHOW

// for radius 15 down to 0
 VPX_CAL_ZOOM

VPX_CAL_SNAP
 VPX_CAL_HIDE

VPX_CAL_END

Page 175

HIWORD(WPARAM) VPX_CAL_BEGIN

Indicates that a calibration sequence is about to start.
This is the first calibration message in the sequence. In general you

would want to blank the stimulus display screen and disable other
graphics drawing.

LOWORD(WPARAM) The calibration point number, the actual point index number, not the
random or custom sequence number.

LPARAM The location of the upcoming stimulus point.

// Contains the location of the upcoming stimulus point.
As below, use: VPX_LParam2RectPoint(lParam, cr, &calPt);

HIWORD(WPARAM) VPX_CAL_WARN

Provides an opportunity to display a warning message to the subject, to
make sure that they are paying attention.

Follows VPX_CAL_BEGIN.
The warmomg time, i.e., the delay between this event and the next

event, can be specified in ViewPoint, EyeSpace window, Advanced
button, WarningTime slider.

LOWORD(WPARAM) The calibration point number, the actual point index number, not the
random or custom sequence number.

LPARAM Contains the location of the upcoming stimulus point.

POINT calPt; PTCHAR str = " PAY ATTENTION " ;
RECT cr ;
GetClientRect(hwnd, &cr);
VPX_LParam2RectPoint(lParam, cr, &calPt);
TextOut(hdc, calPt.x-80,calPt.y, str, strlen(str));

Page 176

HIWORD(WPARAM) VPX_CAL_SHOW

Indicates that the calibration stimulus point should be drawn.
Follows VPX_CAL_WARN for the first stimulus point; loops back to here

after VPX_CAL_HIDE for each additional stimulus point.

LOWORD(WPARAM) The calibration point number, the actual point index number, not the
random or custom sequence number.

LPARAM Contains the location of the stimulus point.
As above, use: VPX_LParam2RectPoint(lParam, cr, &calPt);

HIWORD(WPARAM) VPX_CAL_ZOOM

Indicates a radius change of the tunnel motion of the stimulus.
Follows VPX_CAL_SHOW and is repeatedly sent until the radius shrinks

to zero.

LOWORD(WPARAM) The stimulus radius (shrinks from 15 to 2).
WORD zoomSize = LOWORD(wParam);

LPARAM Contains the location of the stimulus point.
POINT pt ;
WORD r, zoomSize = LOWORD(wParam);
RECT cr ; GetClientRect(hwnd, &cr); VPX_LParam2RectPoint(
lParam, cr, &pt);
r = cr.right * zoomSize / 200 ;
Rectangle (hdc, pt.x - r, pt.y - r, pt.x + r, pt.y + r);

Page 177

HIWORD(WPARAM) VPX_CAL_SNAP

Indicates that the calibration image of the eye is being taken
Follows the series of VPX_CAL_ZOOM events, after zoomSize has

shrunk to zero; or if the calibration mode is in snapMode, this is called
itself.

LOWORD(WPARAM) The calibration point number, the actual point index number, not the
random or custom sequence number, is in the lower 8 bits, flags for
slipCorrection mode and snapMode are in the upper 8 bits.

WORD loWordw = LOWORD(wParam);
BOOL slipMode = (loWordw & 128) ? 1 : 0 ; // bit 8
BOOL snapMode = (loWordw & 256) ? 1 : 0 ; // bit 9
int pointNumber = LOWORD(wParam) & 127 ; // lower bits 0..7

LPARAM Contains the location of the stimulus point.
As above, use: VPX_LParam2RectPoint(lParam, cr, &calPt);

HIWORD(WPARAM) VPX_CAL_HIDE

Indicates completion of the current calibration point. The program
should clean up any remnants of this last calibration stimulus point
display.

Follows VPX_CAL_SNAP.

LOWORD(WPARAM) The calibration point number, the actual point index number, not the
random or custom sequence number.

int pointNumber = LOWORD(wparam)

LPARAM Contains the location of the stimulus point.
As above, use: VPX_LParam2RectPoint(lParam, cr, &calPt);

Page 178

HIWORD(WPARAM) VPX_CAL_END

Indicates that the entire calibration sequence has finished. The
LOWORD indicates whether or not a slipFix was requested. A 1
indicates slipFix, zero indicates (re)calibration of a point.

Follows the VPX_CAL_SNAP of the last calibration stimulus point.

LOWORD(WPARAM) Indicates whether or not a slipFix was requested (rather than e.g. a
recalibration) . A 1 indicates slipFix, zero indicates recalibration of a
point.

Note: this is not currently consistent with the wparam format used in
VPX_CAL_SNAP, but it may be made consistent in the future.

BOOL doSlipFix = LOWORD(wParam) == 1 ;

LPARAM Contains the location of the stimulus point.
As above, use: VPX_LParam2RectPoint(lParam, cr, &calPt);

Page 179

Chapter 16 Legacy, Obsolete, &
Deprecated

Do not use the following for new work. They are described here only for
reference use with already existing code and to provide a migration path for new
code development.

16.1.1 Old CLP

Old Name New Name Reason
circularPupilCriteria pupilAspectCriterion Singular / Clarity
calibrationSpeed calibration_StimulusDuration Clarity
gazeGraphics gazeGraphicsOptions Easier string parser
stimulusGraphics stimulusGraphicsOptions Easier string parser
pupilMinWidthCriteria pupilMinWidthCriterion Singular
pupilAspectCriteria pupilAspectCriterion Singular
circularPupilCriteria pupilAspectCriterion Clarity & Singular
pupilMaxWidthCriteria pupilMaxWidthCriterion Singular
cursorControl cursor_Control Consistency
gazeColor penColorA Clarity & binoc

Page 180

16.1.2 Old VPX

Old Change
VPX_GetGlintScanOffset
VPX_GetGlintScanUnyokedOffset
VPX_CHANGE_GlintScanOffset

VPX_CHANGE_PupilScanArea

VPX_CHANGE_GlintScanSize

Obsolete

VPX_SetCalibrationDensity Obsolete
VPX_LaunchViewPoint
VPX_LaunchViewPointEx

Use: VPX_LaunchApp

VPX_DataFile_StoreRejectData
VPX_DAT_FAILED

In previous versions of ViewPoint, the
default was to only store good data in the
data file. This command was used to
override that default behavior. In newer
versions of ViewPoint all data is stored
together with a QualityCode that indicates
how good the data is. See:
VPX_GetQualityCode.

VPX_GetROI_InCode
VPX_DisplayROI_InCode

Old positional bit code was cumbersome.
New string parser is easier and clearer

Page 181

Chapter 17 Troubleshooting
This section discusses some of the common sources of error and problem areas. Once

recognized, many of these can be avoided.

17.1 EventHistory Window
The EventHistory window can be a very useful tool for troubleshooting many problems

including video and settings file problems. Use menu item Windows > EventHistory to view. For
troubleshooting settings file commands menu item File > Settings > Verbose loading will display
extra information from the CLP.

17.2 Improving Frame Rate
The video frame rate will be compromised when other demands are made on the computer.

Ways to improve video frame rate include:
Closing the Event History window will significantly improve performance.
Turn off “Show Dots” in the EyeCamera window.
Turn off the screen saver.
Ensure that there are no other applications running that are not required.

17.3 EyeCamera Window Troubleshooting
If a video source was connected to the computer when ViewPoint™ was started, the

EyeCamera window should display the captured video image. Otherwise, follow the following
troubleshooting tips:

If the EyeCamera window shows “*** FROZEN ***”, then you should select the
menu item: Video > Freeze Video, which will toggle the check mark next to this item and unfreeze
the video processing.

Ensure that the frame grabber board and drivers have been correctly installed.
Check in the Windows Device Manager for conflicts.

Reset the video: Video > Reset Video

Note: If a camera is disconnected and reconnected then ViewPoint will automatically
reset the video pipe and start working again. If after eight reset tries the software cannot
detect a camera then the message MaxVideoResetTries exceeded will appear in the Status
window.

If the EyeCamera window background is black, white or blue, then check the

Page 182

following:
The camera is plugged into the computer properly.
The camera is getting power that it needs, e.g., from a power supply.
The camera is getting enough light.
The camera iris adjustment is open.
The lens cap has been removed!
If the EyeCamera window video segmentation is not working, make sure the

display monitor is set to True Color (32 bit).
17.3.1 Bottom half of EyeCamera window is black

If the bottom of EyeCamera image is black as in Figure 19: Then the video standard has
been set to PAL or SECAM, but the camera is NTSC. All ARI supplied cameras are NTSC. Select
menu item: Video > Video Standard > NTSC. Also check any Settings file that may be loaded,
e.g. StartUp.txt, that may specify a different video standard.

Figure 19: EyeCamera Window if Incorrect Video Mode Selected

Video Mode set to SECAM Video Mode set to PAL

17.4 General Troubleshooting
If the color of the sliders and buttons are different than the window background, change the

appearance settings in the Windows Controls > Display > Appearance to the Windows Standard
scheme.

Page 183

Chapter 18 History of Eye Tracking
Methods

The quest to be able to determine where the eyes are looking has been long and elusive.
Many talented individuals have invested many years to achieve this goal and many methods have
been tried. It is useful to understand some of the methods available, so as to avoid repeating
mistakes and to choose the best method for a particular purpose.

18.1 Electrical Methods
18.1.1 Surface Recordings

The most obvious solution suggested by most lay people is to record the eye muscle activity
around the eye, but this electromyographic information is insufficient to determine the position of
gaze. Interestingly however, there is an electrical potential between the front and the back of the
eyeball. Measurement of this potential is called electro-oculography (EOG). It is relatively easy, but
not very precise. One of the problems is the potential shows substantial diurnal variation, which
necessitates that experiments be conducted at the same time of day. This method can also show
substantial drift of the signal over time.

18.1.2 Induction Coils
With this method the head must be inside of a box frame that holds large magnetic induction

coils, which bathe the head in alternating magnetic fields. The different dimensions of the box use
different alternation frequencies. Electrical currents will be induced in a coil of wire that is moved
inside box. Movements in different dimensions can be de-multiplexed by selectively filtering for the
different alternation frequencies. Permanently implanting coils of wire in the eyes, so called scleral
search coils, provides one of the most accurate methods of eye tracking available to date.
Needless to say, this is usually possible only in animal experiments. Alternatively, tight fitting
contact lenses can be used in humans, but the lead-wires hanging from the contact lenses interfere
with normal eye blinks and they can not be tolerated for very long.

18.2 Optical Methods
18.2.1 Reflections, or Purkinje Images

Light is reflected from surfaces when there is a change in optical density. This occurs in the
eye first at the corneal surface (air to cornea), second from the back of the cornea (cornea to
aqueous humor), third at the front surface of the lens and fourth from the back surface of the lens.
These reflections are referred to as the first to fourth Purkinje images, respectively. These
reflections can be used for eye tracking.

Corneal Reflection Tracking
The first purkinje image, the reflection from the front of the cornea, is also referred to as glint.

An infrared light source produces a specular reflection on the smooth cornea, which is recorded by

Page 184

an infrared light sensitive device. Used alone, this method is very sensitive to head movement
when calculating direction of gaze.

Other Reflections
The other purkinje images can also be used for eye tracking and they can be used in

combination with one another. One problem is that the higher numbered (deeper within the eye)
Purkinje images tend to be quite dim compared to the first purkinje image.

18.2.2 Dark Pupil Tracking
An un-collimated infrared light source will make even the darkest iris appear light, so as to

produce a high contrast with the dark pupil that acts as a sink for the infrared light. The pupil edges
are located and the pupil center is calculated. Used alone, this method is sensitive to head
movement when calculating direction of gaze.

18.2.3 Limbus Tracker
The limbus is the junction between the smooth clear cornea and the much rougher white

sclera that surrounds it. This method takes advantage of there being a difference in the amount of
light reflected from the cornea compared to the sclera. This reflectivity difference produces a
contrast difference that can be monitored by photodetectors (e.g. phototransistors, or historically
photodiodes); typically two photodetectors are placed on either side of the eyeball. Used alone this
method is sensitive to head movement when calculating direction of gaze.

18.2.4 Bright Pupil Method
Collimated infrared light reflects off the retina, similar to the reflection we see from the eyes

of a nocturnal animal, or in red-eye from flash photography. This also can be detected and located.
Used alone, this method is sensitive to head movement when calculating direction of gaze.

18.2.5 Corneal Bulge Method
It is possible to calculate the location of the corneal bulge by using an array of detectors

placed around the eye to sense variations in total infrared reflection. This system has the
advantage of being able to locate the bulge even when the eye is closed, however it is typically
confused by eye blinks. Used alone, this method is sensitive to head movement when calculating
direction of gaze.

18.2.6 Vector Difference Method
When using only a single signal there is always confusion between eye movements and

head movements. Most eye movements are relatively small compared to head movements, even
when a person thinks that they are holding their head still. A solution is to use two signals that
move together in a constant way when the head moves, but that vary from one another as the eye
moves. By comparing only the difference between these two signals, eye movements can be
disambiguated from head movements. This difference can be thought of as a floating vector. Only
the magnitude and direction are important, not the absolute position. We will briefly discuss two of
these vector difference methods., both of which usually employ video image processing.

One popular vector difference method compares the corneal reflection, i.e., the first Purkinje
image, to the reflection from the back surface of the crystalline lens, i.e., the fourth Purkinje image,

Page 185

and is often referred to as a Purkinje eye tracker. The fourth purkinje image is however quite dim
and care must be taken not to expose the subject to excessive amounts of infrared light in an
attempt to image it.

The most easily observed vector difference method is sometimes called the Pupil-Corneal
Complex Method, which is the method used by ViewPoint™. In this method it is the difference
between the position of the corneal reflection and the position of the pupil.

Vector difference methods are not without problems of their own. (a) There are now two
sources of position noise instead of one. (b) Given a change in viewing direction, the magnitude of
the vector signal is smaller than that of the individual signals; the result is a lower signal to noise
ratio. (c) While the vector difference methods are robust against horizontal (sideways, x-axis) and
vertical (up/down, y-axis) direction movements, they are more sensitive to in-and-out (closer or
farther from the camera, z-axis) movement of the head. This is because the distance between the
two points, i.e., the vector length, becomes shorter in video image, as the head is moved backward
away from the camera.

Page 186

Chapter 19 Binocular Option
This section describes those features that are particular to the ViewPoint EyeTracker®

binocular option only.

19.1 Installing Binocular FrameGrabber & Software
Refer to Chapter 3.

19.2 Operating in Binocular Mode
The main (monocular) ViewPoint window shows Eye-A. When in binocular mode, the second

ViewPoint window shows Eye-B. To switch from monocular to binocular operation, select menu
item: Binocular > Binocular Mode

Alternatively, use the command line parser (CLP) command:
binocular_Mode [On , Off]

This command may be placed in the settings file startup.txt to automatically set your
binocular preference when ViewPoint is launched. Refer to Chapter 10 and Chapter 11.

When in binocular mode, the Eye-B window contains only those controls and menu items
necessary to adjust the EyeCamera image settings and calibration points for Eye-B. All other
controls will be made through the Eye-A window.

19.3 Setup
For optimal performance in the binocular mode, follow these suggestions:
The video modes may be different between Eye-A and Eye-B during setup. However, when

collecting data both Eye-A and Eye-B are collecting at the same speed.
Set the video modes to High Precision rather than High Speed, unless the higher speed is

actually required.
Close EyeCamera windows in both Eye-A and Eye-B when running in High Speed mode.
Many controls are disabled in the Eye-B window. Do not try to bypass the inactivated menu

items by loading settings files that contain commands to change these items.
When collecting data, avoid moving the mouse, especially to resize or move windows, which

may cause video frame loss especially on slower computers.

19.4 Storing Data
The data file will automatically have data columns appended for binocular mode. Quality

markers are recorded for each eye which will allows collection of data from one eye, even if the

Page 187

other eye data has been rejected for some reason. The data file record format is typically a
sequence as follows:
Tag#, EyeA_data, EyeB_data, Count, Markers

Refer to Chapter 9 for details of data file format.

19.5 Real-Time Display of Binocular Data
The binocular data may be combined in a “cyclopean” average position during the display in

the GazeSpace and Stimulus windows and in the PenPlot window:
See menu items:

Binocular > Show both eye positions
Both eye positions will be displayed as separate points in the GazeSpace and Stimulus

windows.
Binocular > Show Averaged Y-Positions

Two positions of gaze will be displayed in the GazeSpace and Stimulus windows. These
will reflect the average of the vertical (Y) positions of both eyes.
Binocular > Show Average of Eye Positions

One position of gaze will be displayed in the GazeSpace and Stimulus windows. This will
take the average of the eye positions.

Note: Regions of Interest (ROI) hit lists are triggered by the (possibly smoothed)
individual positions of gaze, but with no binocular averaging.

Alternatively, use the command line parser (CLP) command:
binocular_Averaging [Off, only_Y, both_XY]

This command may be placed in the settings file startup.txt to automatically set your
binocular preference when ViewPoint is launched. Refer to Chapter 10 and Chapter 11.

19.6 Interfacing to Other Applications
ViewPoint EyeTracker® provides for communication with other applications running on the

same computer or a remote computer. The software developer kit (SDK) contains new or
augmented functions for binocular data typically taking the following form:
New: VPX_SomeFunction2 (EyeType eye, VarType *var) ;
Old: VPX_SomeFunction (VarType *var)
#define EyeType int
#define Eye_A 0 // the first, or monocular eye
#define Eye_B 1 // the second, or binocular option eye

The SDK notification message VPX_DAT_FRESH is issued separately for each eye. The

Page 188

low word of the message contains the eye of origin information:
EyeType eye = LOWORD (wParam) ; // will be either Eye_A or Eye_B

Note: Serial port packets and the RemoteLink application currently do not contain
information about the second eye. Updates will be sent to customers when this is included.

19.7 Settings Files
You will need to load and save separate settings files for each eye using menu items: File >

Data > ….. Refer to Chapter 10.

Page 189

Chapter 20 Head Tracker Option
This section describes those features that are particular to the ViewPoint EyeTracker®

head tracker option only.

20.1 General
Currently the ViewPoint EyeTracker® works exclusively with the FlockOfBirds (FOB)

magnetic tracker for its head tracking capability. ViewPoint connects to FOB via a serial port
interface. We have designed the interface so that the user should not need to spend much time
reading the FOB Installation and Operation Guide (IOG). In particular, you do not need to examine
or change the internal jumpers inside the FOB electronics unit, you do not need to consider the low
level commands that are described, and any dip switch changes that are pertinent to ViewPoint
users are described below. Note: if you read only the sections of the IOG specified below, and
SKIP the other sections, you should stay out of trouble.

Important: The sensor must be within +/- 4 feet of the transmitter; otherwise, data will not
be accurate.

20.2 Unpacking
Please check the contents of the FOB box listed in section 2.0. Items 1 through 4 and 7

through 10 should be included. Items 5 and 6 are not part of this package and the optional
extended range transmitter is not included.

20.3 Installation
Please read the following sections of the IOG:

2.1.1 ELECTRONICS UNIT LOCATION
2.2.2 TRANSMITTER LOCATION
2.1.3 SENSOR LOCATION
2.1.4 POWER SUPPLY LOCATION

Please SKIP sections 2.1.5, 2.1.6, and 2.1.7, as these are preset for ViewPoint.

20.4 Cable Attachment
Please connect the cables as described on p.15-16, in section 2.2:

2.2.1 RS-232C CABLE
2.2.4 SENSOR CABLE

Page 190

2.2.5 TRANSMITTER CABLE
2.2.6 CRT SYNC CABLE (optional)
2.2.7 POWER CABLE

Sections 2.2.2 and 2.2.3 relating to FBB CABLE are not relevant.

20.5 Baud Rate and DipSwitch Settings
Currently the ViewPoint EyeTracker® works only with Position/Angles data records (this

may be changed in the future to allow for additional capabilities). The Position/Angles data record
type allows 113 records per second at 19.2K baud, and approximately 56 records per second at
9600 baud. The current default is 19.2K. In any case, the FOB settings and the ViewPoint settings
must match. The baud rate for the FOB is set by adjusting the dipswitches on the back of the FOB
box. Dipswitch changes must be made when the switch on the front of the FOB box is set to STBY.

The dipswitch settings are described on p.12 of the FOB-IOG, and are summarized here.

Table 15: Head Tracker Dip Switch Settings
DIPSWITCH #

1 2 3
BAUD RATE

Off On On 9600

On Off Off 19.2K

All other dipswitches (4 through 8) should remain in the up (OFF) position.
The baud rate is specified via the dialog box: ViewPoint menu item: HeadTrack >

Connection Settings…. Only the port and the baud rate should be modified; all other settings
should remain the same. DataBits=8, Parity=None, StopBits=1, and all check boxes must be left
unchecked.

Note: Depending on the type of computer you are using, when the eye tracker is running at
60Hz Binocular, the frame rate may be less noisy if the baud rate to the FOB is lowered from 19.2K
baud to 9600 baud.

20.6 Connection to FOB
After all port and baud rate settings have been specified, the user may connect to the FOB.
First flip the FOB front panel switch to FLY, the red light on the front of the box should will

start blinking as it is trying to find the small sensor, then the red light should be constantly ON.
Next, use the ViewPoint menu item: HeadTrack > Connect. The red light on the front of

Page 191

the box may or may not blink, but after a few seconds, it should be constantly ON. If it is not, there
is a connection problem; check baud rate match, cables, etc.

After connecting the first time, the user may wish to select ViewPoint menu item:
HeadTrack > Disconnect when not collecting data, because this will put the FOB to sleep and
turn off the strong magnetic field.

20.7 CRT Synchronization

ViewPoint has been designed to take advantage of the FOB CRT SYNC option. If working
close to a CRT, the magnetic fields can interfere with the display. You can synchronize the FOB to
the monitor using the CRT SYNC Pickup. First find a location where the signal is strong; the
maximum voltage will be obtained on the top or side of the CRT housing near the deflection yoke,
typically halfway between the front and the back of the cabinet.

Make sure the pickup is plugged into the FOB before starting. See p. 16, section 2.2.6 of
IOG for details.

Select ViewPoint menu item: HeadTracker > Connect
Select ViewPoint menu item: HeadTracker > CRT Sync > Test Signal Strength
The voltages and the CRT refresh rate will be displayed in the Status window and in the

EventHistory window. The FOB light should not be glowing when you are in this mode.

Important: This voltage and Hz data should be correct when connected at 19.2K baud,
but may be incorrect when connected at 9600 baud.

Select ViewPoint menu item: HeadTracker > CRT Sync > Sync to 50- 72 Hz Display, or
select Sync to 73-144 Hz Display, depending on your CRT display refresh rate.

20.8 Location and Orientation of Transmitter &
Receiver
The penPlot ranges assume that the transmitter is at approximately the left shoulder and

(design side) facing right. The receiver should be on the head in the same orientation, with the wire
leaving it to the left and the design side facing right. The bottoms of each should be downward.

In the above configuration the data file columns will be as follows:
Position Coordinates (cm):

X-pos will indicate horizontal movement with positive to the right
Y-pos will indicate vertical movement with positive upward
Z-pos will indicate movement of the head toward or away from the CRT display

Page 192

Orientation Angles (degrees):
Yaw about the Y-axis. (The position where the nose points moves along the

horizontal.)
Pitch about the X-axis. (The position where the nose points moves along the

vertical.)
Roll about the Z-axis.

20.9 Head Tracker Event Data
The FOB hardware always creates new data at exactly 100Hz; this cannot be modified. We

can request that data be send to the computer at various rates, including rates that are faster than
new data is being created, but this would be a waste of computer resources to process the
incoming data. The timing of the eye tracker cameras is not synchronized with the timing of the
head tracker, so fresh data is arriving from these various sources at different times.

Select the menu item: HeadTracker > Asynchronous Data Storage if you want the
incoming FOB data to be inserted into the data file as soon as it is acquired, which will have it
appear on a separate data line. Otherwise, uncheck this option to have the most current head
tracker data appended to the each line of eye tracker data (i.e., in the same record). The
asynchronous head tracker data is indicated by record tag number 14 in the first column of the data
file.

Refer to Chapter 9 for data file format.

20.10 HeadSpace Window
The HeadSpace window provides real-time graphical display of head position and head

angular orientation. The window also displays the stimulus display screen (x,y) intercept point of
the (gaze forward) primary axis of the eye, based on the user specified distance from the
headTracker sensor to the center of rotation of eye.

20.11 Troubleshooting
If there is no movement showing in the data, briefly switch to STBY and then back to FLY

Page 193

ARI Software License
PLEASE READ THIS SOFTWARE LICENSE AGREEMENT “AGREEMENT” CAREFULLY BEFORE USING
THE SOFTWARE. BY USING ALL OR ANY PART OF THE SOFTWARE, YOU ARE AGREEING TO BE
BOUND BY ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU ACQUIRED THE
SOFTWARE ON TANGIBLE MEDIA (e.g. CD) WITHOUT AN OPPORTUNITY TO REVIEW THIS
AGREEMENT AND YOU DO NOT ACCEPT THIS AGREEMENT, YOU MAY OBTAIN A REFUND OF ANY
AMOUNT YOU ORIGINALLY PAID IF YOU: (A) DO NOT USE THE SOFTWARE AND (B) RETURN IT,
WITH PROOF OF PAYMENT, TO THE LOCATION FROM WHICH IT WAS OBTAINED WITHIN THIRTY
(30) DAYS OF THE PURCHASE DATE.
1. Definitions: "Software" means (a) all of the contents of the files, disk(s), CD-ROM(s) or other media with
which this Agreement is provided, including but not limited to (i) ARI or third party computer information or
software; (ii) digital images, stock photographs, clip art, sounds or other artistic works ("Stock Files"); and
(iii) related explanatory written materials or files ("Documentation"); and (b) upgrades, modified versions,
updates, additions, and copies of the Software, if any, licensed to you by ARI (collectively, "Updates"). "Use"
or "Using" means to access, install, download, copy or otherwise benefit from using the functionality of the
Software in accordance with the Documentation. "Permitted Number" means one (1) unless otherwise
indicated under a valid license (e.g. volume license) granted by ARI. "Computer" means an electronic device
that accepts information in digital or similar form and manipulates it for a specific result based on a
sequence of instructions. "ARI" means Arrington Research, Inc., an Arizona corporation.
2. Software License: As long as you comply with the terms of this Agreement, ARI grants to you a non-
exclusive license to use the Software for the purposes described in the Documentation. You may install and
use a copy of the Software on your compatible computer, up to the Permitted Number of computers; You
may make one backup copy of the Software, provided your backup copy is not installed or used on any
computer. The software accompanying this Agreement, whether on disk, on compact disk, in read only
memory, or any other media, the related documentation and other materials (collectively, the “ARI
Software”) are licensed, not sold, to you by ARI. The ARI Software in this package and any copies,
modifications and distributions which this Agreement authorizes you to make are subject to this Agreement.
3. Intellectual Property Rights. The Software and any copies that you are authorized by ARI to make are
the intellectual property of and are owned by ARI. The structure, organization and code of the Software are
the valuable trade secrets and confidential information of ARI. The Software is protected by copyright,
including without limitation by United States Copyright Law, international treaty provisions and applicable
laws in the country in which it is being used. You may not copy the Software, except as set forth in Section 2
("Software License"). Any copies that you are permitted to make pursuant to this Agreement must contain
the same copyright and other proprietary notices that appear on or in the Software. You also agree not to
reverse engineer, decompile, disassemble or otherwise attempt to discover the source code of the Software.
Trademarks can only be used to identify printed output produced by the Software and such use of any
trademark does not give you any rights of ownership in that trademark. Except as expressly stated above,
this Agreement does not grant you any intellectual property rights in the Software. The ARI software may
only be used by you for the purpose described herein and may not be disclosed to any third party or used to
create any software which is substantially similar to the expression of the Software.
4. Transfer. You may not rent, lease, sublicense or authorize all or any portion of the Software to be copied
onto another user’s computer except as may be expressly permitted herein. You may, however, transfer all
your rights to use the Software to another person or legal entity provided that: (a) you also transfer each this
Agreement, the Software and all other software or hardware bundled or pre-installed with the Software,
including all copies, Updates and prior versions, to such person or entity; (b) you retain no copies, including
backups and copies stored on a computer; and (c) the receiving party accepts the terms and conditions of
this Agreement and any other terms and conditions upon which you legally purchased a license to the
Software; (d) you obtain prior written permission from ARI. Notwithstanding the foregoing, you may not
transfer education, pre-release, or not for resale copies of the Software.
5. Limited Warranty on Media: ARI warrants to the person or entity that first purchases a license for the
Software for use pursuant to the terms of this agreement, that the software is recorded to be free from
defects in materials and workmanship under normal use for a period of ninety (90) days from the date of
original purchase. Non-substantial variations of performance from the Documentation does not establish a
warranty right. THIS LIMITED WARRANTY DOES NOT APPLY TO UPDATES, OR NOT FOR RESALE
(NFR) COPIES OF SOFTWARE. To make a warranty claim, you must request a return merchandize
authorization number, and return the Software to the location where you obtained it along with proof of

Page 194

purchase within such ninety (90) day period. The entire liability of ARI and your exclusive remedy shall be
limited to either, at ARI’s option, the replacement of the Software or the refund of the license fee you paid for
the Software. THE LIMITED WARRANTY SET FORTH IN THIS SECTION GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE ADDITIONAL RIGHTS WHICH VARY FROM JURISDICTION TO
JURISDICTION.
6. Disclaimer of Warranty. Some of the ARI Software may be designed as alpha, beta, development,
continuing development, pre-release, untested, not fully tested or research only versions of the ARI
Software. Such ARI Software may contain errors that could cause failure of loss of data, and may be
incomplete or contain inaccuracies. You expressly acknowledge and agree that use of the ARI Software is at
you sole risk. The ARI Software is provided “AS IS” and without warranty of any kind and ARI and ARI’s
licensor(s) EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. ARI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE ARI SOFTWARE
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE ARI SOFTWARE WILL BE
UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE ARI SOFTWARE WILL BE
CORRECTED. FURTHERMORE, ARI DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OR THE RESULTS OF THE USE OF THE ARI SOFTWARE OR IN TERMS OF
THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN
INFORMATION OR ADVICE GIVEN BY ARI OR AN ARI AUTHORIZED REPRESENTATIVE SHALL
CREATE A WARRANTY OR IN ANYWAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE
ARI SOFTWARE PROVE DEFECTIVE, YOU (AND NOT ARI OR AN ARI AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION. THE LICENSE FEES FOR THE ARI SOFTWARE REFLECT THIS ALLOCATION OF RISK.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.
7. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING NEGLIGENCE, SHALL ARI BE
LIABLE FOR ANY INCIDENT, SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE
USE OR INABILITY TO USE THE ARI SOFTWARE, EVEN IF ARI OR AN ARI AUTHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME
JURISDICTIONS DO NOT ALLOW LIMITATIONS OR EXCLUSION OF LIMITED LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY TO YOU. In no event shall ARI’ s total liability to you for all damages, losses and causes of
action (whether in contract, tort (including negligence) or otherwise) exceed the license fee that you paid for
the Software.
8. High Risk Activities: Effort has been made to provide a bug-free product. Nevertheless, this software is
not fault tolerant and is not designed, manufactured or intended for use or resale in the operation of nuclear
facilities, aircraft navigation or communications systems, or air traffic control, or medical treatment and
diagnosis, or for any other use where the failure of the Software could lead to death, personal injury,
damage to property or severe environmental damage (“High Risk Activities”). ARI specifically disclaim any
express or implied warranty of fitness for High Risk Activities.
99 2-Jun-03 © Arrington Research, Inc. All rights reserved 100 9. Export Law Assurances. You agree that
the ARI Software will not be exported outside the United States except as authorized by United States law.
You also agree that ARI Software
that has been rightfully obtained outside the United States shall not be re-exported except as authorized by
the laws of the United States and of the jurisdiction in which the ARI Software was obtained.
10. Controlling Law and Severability. This Agreement shall be governed by the laws of the United States.
If for any reason a court of competent jurisdiction finds any provision, or portion thereof, to be
unenforceable, the remainder of this Agreement shall continue in full force and effect.
11. Complete Agreement. This Agreement constitutes the entire agreement between the parties with
respect to the use of the ARI Software and supersedes all prior or contemporaneous understandings
regarding such subject matter. No amendment to or modification of this Agreement will be binding unless in
writing and signed by ARI.

Page 195

 Third Party Licenses

From time to time, some portions of the ViewPoint EyeTracker ® code may utilize third party libraries, or modifications
thereof, that have their own License Agreements. These are included here below.

Intel License Agreement For Open Source Computer Vision Library

Copyright (C) 2000-2005, Intel Corporation, all rights reserved.

Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistribution's of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

* Redistribution's in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* The name of Intel Corporation may not be used to endorse or promote products
 derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the Intel Corporation or contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or
profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of
such damage.

AT&T License Agreement for 2D Convex Hull code

Some 2D convex hulll code is modified from what was written by Ken Clarkson. Copyright (c) 1996 by AT&T..
Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that
this entire notice is included in all copies of any software which is or includes a copy or modification of this software and in
all copies of the supporting documentation for such software.
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY REPRESENTATION OR WARRANTY OF ANY KIND
CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

	Chapter 1 Introduction
	1.1 Congratulations
	1.2 Custom Software & Hardware Development
	1.3 User Feedback
	1.4 License Information and Conditions of Use
	1.5 High-Risk Activities Warning
	1.6 Special Thanks
	1.7 How to Use this User Guide
	1.8 Info Window
	1.9 Support
	1.10 Citing ViewPoint

	Chapter 2 Overview of ViewPoint
	2.1 General Description
	2.2 Infrared Light
	2.3 Mapping to Gaze Point
	2.4 Software Developer’s Kit (SDK)
	2.5 Command Line Parser (CLP)
	2.6 Inter-Computer & Inter-Application Communication

	Chapter 3 Installation and Setup
	3.1 Computer System Requirements
	3.2 Video Requirements
	3.3 Using with Third Party Video Input Equipment
	3.4 PCI Video Capture Card and Driver Installation
	3.5 ViewPoint EyeTracker® Software Installation
	3.6 License Agreement
	3.7 ViewPoint License (.VPL) File
	3.8 Menu Navigation
	3.9 User Windows

	Chapter 4 Tutorial
	4.1 Stimulus Window Positioning (Head Fixed)
	4.2 EyeCamera Window Setup
	4.3 Corrective Lenses (Eye Glasses)
	4.4 Thresholding
	4.5 Calibration (Head Fixed)
	4.6 Data Collection and Analysis
	4.7 Sampling Rate
	4.8 Frequently Used Settings
	4.9 Preferred Window Layout
	4.10 Accelerator Keys
	4.11 Printing

	Chapter 5 Locating the Pupil and Glint
	5.1 Feature Method
	5.2 Noise
	5.3 Automatic Slip Compensation
	5.4 Simulation of Gaze
	5.4.1 Manual Simulation
	5.4.2 Pattern Simulation (only on special versions)

	5.5 Setting the Search Regions
	5.6 Brightness and Contrast Adjustments
	5.6.1 Video AutoImage

	5.7 Thresholding and Setting the Scan Density
	5.7.1 Setting the Scan Density
	5.7.2 AutoThreshold
	5.7.3 Positive Lock Threshold Tracking

	5.8 Criteria
	5.8.1 Pupil Aspect Criterion
	5.8.2 Width Criteria

	5.9 Step-by-step guide for Glint-Pupil Vector method
	5.10 Alternative Segmentation Methods
	5.10.1 Centroid
	5.10.2 Edge Trace (only on special versions)
	5.10.3 Oval Fit
	5.10.4 Ellipse (only on special versions)
	5.10.5 Glint Segmentation Methods

	5.11 Pupil Scan Area Shape Options

	Chapter 6 Calibration
	6.1 Raw Data Without Calibration
	6.2 Calibration Description.
	6.3 Calibration Carryover.
	6.4 Calibration Procedure (Head Fixed)
	6.5 Assessing Calibration Success
	6.6 Omitting Individual Calibration Points
	6.7 Re-presenting Individual Calibration Data Points
	6.8 Slip Correction
	6.9 Instructions to Subject
	6.10 Dominant Eye
	6.11 Saving Calibration Eye Images
	6.12 Advanced Calibration Controls
	6.12.1 Presentation Order
	6.12.2 Snap and Increment Calibration Modes
	6.12.3 Adjusting the Calibration Area

	6.13 Custom Calibration Point Positions
	6.14 Geometry Grid

	Chapter 7 Cursor Control
	Chapter 8 Ocular Torsion
	8.1 Introduction to Torsion
	8.2 Procedure for Measuring Torsion
	8.3 Torsion Demonstration Test
	8.4 Overriding the Default Torsion Parameters

	Chapter 9 Stimulus Presentation (Head Fixed)
	9.1 General
	9.2 Picture Lists
	9.3 Using the Stimulus Window (Head Fixed Option)
	9.4 Using the GazeSpace Window
	9.5 Regions of Interest (ROI)
	9.6 Data Smoothing
	9.7 Using the SDK, settings files and Serial Port Interface for Stimulus Presentation
	9.8 Integrating with Third Party Products

	Chapter 10 Data Collection
	10.1 Sampling Rate
	10.2 Saving Data to File
	10.3 Data File Format
	10.3.1 File header information
	10.3.2 File records
	10.3.3 Synchronous vs. Asynchronous data inserts
	10.3.4 Data Record Tags.

	10.4 Direction-of-gaze Coordinates
	10.5 Timing Measurement
	10.6 Region of Interest (ROI)
	10.7 Quality Marker Codes
	10.8 Pupil Diameter
	10.9 Pupil Aspect
	10.10 Display Screen Geometry

	Chapter 11 Data Analysis
	11.1 Real-Time
	11.1.1 Data Smoothing

	11.2 Fixation, Saccade, Drift and Blinks
	11.2.1 Velocity Threshold
	11.2.2 Fixations
	11.2.3 Drift
	11.2.4 Blinks
	11.2.5 Events
	11.2.6 SDK

	11.3 Post-Hoc

	Chapter 12 Using Settings Files
	12.1 CLP String Parsing
	12.2 Saving and Loading Settings Files
	12.3 Pre-load Settings in a Startup file
	12.4 Settings/LastRun.txt
	12.5 Settings File Lists
	12.6 SettingsFile Examples
	12.7 CLP Commands
	12.8 Associating CLP Commands with FKeys

	Chapter 13 Serial Port Communication
	13.1 Getting Started
	13.2 Sending Real and Test Data
	13.3 Transfer to Intel and Macintosh Machines
	13.4 Connections
	13.5 Serial Protocol
	13.6 Serial Packet Header Structure
	13.7 Serial Packet Data Structures
	13.8 Data Value Encoding
	13.9 Packet Data Structures
	13.10 Example Serial Port Code

	Chapter 14 ViewPoint Interface: GUI, SDK, CLP
	14.1 General
	14.1.1 VPX_SendCommand(“setSomething”) replaces VPX_SetSomething
	14.1.2 VPX_SendCommand & formatted strings
	14.1.3 Quoting strings with white spaces
	14.1.4 Case insensitive CLP strings
	14.1.5 Boolean Toggle
	14.1.6 SDK return values

	14.2 Data Files
	14.2.1 Open Data File with Randomly Generated Name
	14.2.2 Specify NewUnique Data File Extension
	14.2.3 Open a Data File and Specify a File Name
	14.2.4 Insert a String into the Data File
	14.2.5 Insert a Marker into the Data File
	14.2.6 Insert a User Defined Data Tag into the Data File
	14.2.7 Specifes asynchronous or synchronous string data
	14.2.8 Specify asynchronous or synchronous markers data
	14.2.9 Specify asynchronous or synchronous head tracker data
	14.2.10 Specify data file start time
	14.2.11 Store smoothed or unsmoothed data
	14.2.12 Specify whether to use buffering (DEPRECATED)
	14.2.13 Pause writing of data to file
	14.2.14 Close Data File
	14.2.15 Close Data File and Open in Post-Hoc Analysis tool

	14.3 Stimulus Images
	14.3.1 Load Stimulus Image into the Stimulus window
	14.3.2 Specifies how to display the currently loaded stimulus image
	14.3.3 Specify a background “matting” color for the stimulus window
	14.3.4 Play specified Sound file

	14.4 PictureList
	14.4.1 Initialize Picture List
	14.4.2 Add List of Image Names to PictureList
	14.4.3 Randomize List of Images in the PictureList
	14.4.4 Move to Next Image in the PictureList
	14.4.5 Move to Start of Images in Picture List

	14.5 Controls window: VideoImage
	14.5.1 Specify Mapping Feature
	14.5.2 AutoThreshold
	14.5.3 Positive Lock Tracking
	14.5.4 Adjust Pupil Threshold Slider
	14.5.5 Adjust Glint Threshold Slider
	14.5.6 Adjust Video Image Brightness
	14.5.7 Adjust Video Image Contrast
	14.5.8 Dynamically Optimize Brightness and Contrast Settings
	14.5.9 Adjust Pupil Scan Density
	14.5.10 Override Pupil Scan Density Minimum
	14.5.11 Adjust Glint Scan Density
	14.5.12 Override Glint Scan Density Minimum

	14.6 EyeCamera Window
	14.6.1 Adjust Pupil Sacn Area
	14.6.2 Specify Pupil Scan Area Shape
	14.6.3 Pupil and Glint oval fit constraints
	14.6.4 Define Glint Scan Area
	14.6.5 Define Offset of Glint Sacn Area Relative to the Pupil
	14.6.6 Unyoke Glint Scan Area from the Pupil
	14.6.7 Define offset of Unyoked Glint Scan Area
	14.6.8 Toggle Show Treshold Dots On / Off
	14.6.9 Specify EyeImage Overlay Graphics sent to layered application (EXPERIMENTAL)
	14.6.10 EyeCamera Tool Bar Display

	14.7 Video related controls
	14.7.1 Specify Video Input Standard
	14.7.2 Specify Tracking Operation Mode
	14.7.3 Specify Dark or Bright Pupil Tracking
	14.7.4 Specify Pupil Segmentation Method
	14.7.5 Specify Glint Segmentation Method
	14.7.6 Changes default setting for Freeze Feature
	14.7.7 Toggle Freeze Video Imge Preview On / Off
	14.7.8 Reset Video Capture Device

	14.8 Calibration controls
	14.8.1 Start Auto-Calibration
	14.8.2 Stop Auto-Calibration
	14.8.3 Specify Calibration Stimulus Presentation Speed
	14.8.4 Specify the duration of presentation of calibration warning notice
	14.8.5 Specifies Interval Between Presentation of Calibration Stimulus Points
	14.8.6 Calibration Snap Mode
	14.8.7 RePresent in Snap Calibration Mode
	14.8.8 AutoIncrement Calibration Mode
	14.8.9 Calibration Stimulus Point Presentation Order
	14.8.10 Specify Number of Calibration Stimulus Points
	14.8.11 Specify Calibration Stimulus Point Color
	14.8.12 Specify Calibration Stimulus Window Background Color
	14.8.13 Randomize Calibration Stimulus Points Check Box (DEPRECATED)
	14.8.14 Specify Calibration Stimulus Point Presentation Order
	14.8.15 Specify Individual Custom Calibration Stimulus Points
	14.8.16 Display Custom Calibration Stimulus Point Order
	14.8.17 Select the Specified Calibration Data Point
	14.8.18 Select the Index Number that Maps to the Specified Calibration Data Point
	14.8.19 Undo the last operation on a Calibration Data Point
	14.8.20 Re-Present the Specified Calibration Data Point
	14.8.21 Specify Custom Calibration Stimulus Point Locations
	14.8.22 Turn Custom Calibration Stimulus Point Location ON / OFF
	14.8.23 Print Locations of custom calibration stimulus points in EventHistory window
	14.8.24 Controls display of nearest-neigbor gridlines in the EyeSpace window
	14.8.25 Compensate for Slip
	14.8.26 Adjust Calibration Area
	14.8.27 Save Image of Eye at each Calibration Data Point

	14.9 Controls: Criteria Controls
	14.9.1 Specify amount of Smoothing
	14.9.2 Specify Smoothing Algorithm to Apply
	14.9.3 Specify Velocity Threshold
	14.9.4 Specify amount of Drift Allowed
	14.9.5 Specify Pupil Aspect Ratio Failure Criterion
	14.9.6 Specify Pupil Width Failure Criterion

	14.10 Region of Interest (ROI)
	14.10.1 Define an ROI Box
	14.10.2 Specify Number of ROI to be drawn in a circle around center of window
	14.10.3 Remove all ROI Boxes
	14.10.4 Select a Specific ROI
	14.10.5 Select the next ROI Box
	14.10.6 Lock ROI Settings

	14.11 PenPlot controls
	14.11.1 Specify Which PenPlot Traces to Display
	14.11.2 BackGround Color of PenPlot Traces
	14.11.3 PenPlot Back Ground Color
	14.11.4 Specify Speed ot PenPlot Scrolling
	14.11.5 Specify Range of PenPlot Values
	14.11.6 Specify the behavior of the penpot after a video freeze

	14.12 Graphics controls
	14.12.1 Specify the color of the GazeSpace and PenPlot Lines
	14.12.2 Specify which Overlay Graphics to Display in the GazeSpace Window
	14.12.3 Specify which Overlay Graphics to Display in the Stimulus Window
	14.12.4 Erase Data Displays in the GazeSpace and Stimulus windows
	14.12.5 Automatically erase display windows
	14.12.6 Specify time delay for auto erase

	14.13 Stimulus Window controls
	14.13.1 Specify Stimulus Source
	14.13.2 Specify Custom Stimulus window Size and Position
	14.13.3 Automatically Show the Stimulus Window on Primary Monitor
	14.13.4 Specify How and where to show Stimulus window
	14.13.5 Calibrate to a third party application window

	14.14 Window related controls
	14.14.1 Print ViewPoint windows
	14.14.2 Include Date and Time Stamp on Printed windows
	14.14.3 Move and Resize Window
	14.14.4 Specify ViewPoint Window Layout
	14.14.5 Clear Event History window
	14.14.6 Save window layout settings

	14.15 Settings File commands
	14.15.1 Load Settings File
	14.15.2 Edit Settings File
	14.15.3 Show Verbose Settings File Loading Details in Event History
	14.15.4 Save Settings e.g. calibrations etc.

	14.16 SettingsFileList commands
	14.16.1 Initialize Settings File List
	14.16.2 Next Settings File in List
	14.16.3 Add Settings File to the List
	14.16.4 Restart Settings File List
	14.16.5 Toggle Autosequencer ON / OFF
	14.16.6 Specify delay between Settings Files in List

	14.17 Torsion commands
	14.17.1 Start / Stop Torsion Calculations
	14.17.2 Adjust Start Point of Torsion Sampling Arc
	14.17.3 Adjust Radius of Torsion Sampling Arc
	14.17.4 Autoset Torsion Template after Adjustments
	14.17.5 Display Real-Time Torsion Data
	14.17.6 Adjust Torsion Measurement Range
	14.17.7 Adjust Torsion Measurement Resolution
	14.17.8 Set Autocorrelation Template

	14.18 Interface settings commands
	14.18.1 Turn Cursor Control On / Off
	14.18.2 Use Fixation to Issue Button Click
	14.18.3 Specify Fixation Time to Issue Button Click
	14.18.4 Use Blinks to Issue Button Click

	14.19 RemoteLink & SerialPort controls
	14.19.1 Connect / Disconnect Serial Port
	14.19.2 Specify Serial Data to Send
	14.19.3 Send Serial Port Ping

	14.20 HeadTracking commands
	14.20.1 Connect / Disconnect Head Tracker Interface
	14.20.2 Specify whether to use local or global origin
	14.20.3 Reset Origin for the Head Sensor
	14.20.4 Set Position and Angle Origins
	14.20.5 Specify the Vector between Head Sensor and the Eyeball.
	14.20.6 Turn CRT pulse synchronization On / Off

	14.21 Binocular commands
	14.21.1 Turn Binocular Mode On / Off
	14.21.2 Specifies Binocular Averaging

	14.22 File Related
	14.22.1 Launch ViewPoint with Command Line Options
	14.22.2 Specify Default ViewPoint Folder path

	14.23 FKey
	14.23.1 Associate CLP Commands with FKeys

	14.24 TTL
	14.24.1 Associate CLP Commands with TTL Voltage Changes
	14.24.2 Set TTL Output Voltages
	14.24.3 Simulate Change in TTL Input
	14.24.4 Set TTL Output to Indicate Data Quality Codes

	14.25 Misc
	14.25.1 Specify Verbose Information to Send to History Window
	14.25.2 Update Eye Data on Request
	14.25.3 Set Status Window Update Rate for FPS Field
	14.25.4 SDK Debug Mode
	14.25.5 Specify ViewPoint Generated Events
	14.25.6 Turn Accelerator Key Functionality On / Off

	14.26 Parser Instructions
	14.26.1 Settings File Comment
	14.26.2 End of Settings File Command

	Chapter 15 Software Developers Kit (SDK)
	15.1 General
	15.2 Registering to Receive Notifications
	15.3 Example SDK Code
	15.4 Data Quality Codes
	15.5 Sending CLP Commands with the SDK
	15.6 High Precision Timing
	15.7 DLL Version Checking
	15.8 SDK Access Functions
	15.8.1 Get Eye Data Access
	15.8.2 Get Time Information
	15.8.3 Get Motor Data
	15.8.4 Get ViewPoint Status
	15.8.5 Get ViewPoint Stimulus Window
	15.8.6 Get Stimulus Display Geometry
	15.8.7 Get ROI
	15.8.8 Set Remote EyeImage

	15.9 DLL Interface
	15.10 ViewPoint Events & Notification Messages
	15.10.1 General Events
	15.10.2 Calibration Events

	Chapter 16 Legacy, Obsolete, & Deprecated
	16.1.1 Old CLP
	16.1.2 Old VPX

	Chapter 17 Troubleshooting
	17.1 EventHistory Window
	17.2 Improving Frame Rate
	17.3 EyeCamera Window Troubleshooting
	17.3.1 Bottom half of EyeCamera window is black

	17.4 General Troubleshooting

	Chapter 18 History of Eye Tracking Methods
	18.1 Electrical Methods
	18.1.1 Surface Recordings
	18.1.2 Induction Coils

	18.2 Optical Methods
	18.2.1 Reflections, or Purkinje Images
	18.2.2 Dark Pupil Tracking
	18.2.3 Limbus Tracker
	18.2.4 Bright Pupil Method
	18.2.5 Corneal Bulge Method
	18.2.6 Vector Difference Method

	Chapter 19 Binocular Option
	19.1 Installing Binocular FrameGrabber & Software
	19.2 Operating in Binocular Mode
	19.3 Setup
	19.4 Storing Data
	19.5 Real-Time Display of Binocular Data
	19.6 Interfacing to Other Applications
	19.7 Settings Files

	Chapter 20 Head Tracker Option
	20.1 General
	20.2 Unpacking
	20.3 Installation
	20.4 Cable Attachment
	20.5 Baud Rate and DipSwitch Settings
	20.6 Connection to FOB
	20.7 CRT Synchronization
	20.8 Location and Orientation of Transmitter & Receiver
	20.9 Head Tracker Event Data
	20.10 HeadSpace Window
	20.11 Troubleshooting

	ARI Software License
	 Third Party Licenses
	ViewPoint EyeTrackercover.pdf
	Contact Information

	ViewPoint EyeTrackercover.pdf
	Contact Information

	ViewPoint EyeTrackercover.pdf
	Contact Information

